Monetariseren van de impact van urban sprawl in Vlaanderen

Studie uitgevoerd door:

vito
COMMON GROUND
vrp

In opdracht van:

Vlaamse overheid

OMGEVINGVLAANDEREN.be
Het onderzoek in dit rapport is uitgevoerd door:
Karolien Vermeiren, Lien Poelmans, Guy Engelen, Steven Broekx, Carolien Beckx, Leo De Nocker, Karolien Van Dyck
karolien.vermeiren@vito.be
www.vito.be

Dit rapport bevat de mening van de auteur(s) en niet noodzakelijk die van de Vlaamse Overheid.
Inhoud

1. Managementsamenvatting ... 13
 1.1. Context .. 13
 1.2. Analyseren van het voorkomen van sprawl in Vlaanderen ... 13
 1.3. De maatschappelijke kosten van sprawl in Vlaanderen .. 15
 1.3.1. Infrastructuur ... 16
 1.3.2. Mobiliteit .. 16
 1.3.3. Ecosysteemdiensten .. 17
 1.4. Toekomstscenario’s ... 18
 1.5. Maatschappelijke discussie ... 19

2. Inleiding .. 20
 2.1. Leeswijzer .. 20
 2.2. Situering en doelstellingen van de opdracht ... 20
 2.3. Algemene aanpak ... 23

3. Onderdeel 1: Analyseren van het voorkomen van sprawl in Vlaanderen .. 24
 3.1. Inleiding ... 24
 3.2. Methodologie .. 25
 3.2.1. Weighted urban proliferation .. 25
 3.2.2. Kernbebouwing, lintbebouwing, verspreide bebouwing ... 27
 3.2.3. Aanvullende maten voor urban sprawl .. 29
 3.3. Data ... 30
 3.3.1. Bebouwingskaarten .. 31
 3.3.2. Inwoners en tewerkstellingskaarten .. 33
 3.4. Resultaten ... 34
 3.4.1. Weighted Urban Proliferation als maat van sprawl .. 34
 3.4.2. Een sprawltypologie voor Vlaanderen ... 48
 3.4.3. Lacunarity index .. 58

4. Onderdeel 2: Maatschappelijke kosten van sprawl .. 60
 4.1. Literatuurstudie binnen- en buitenlandse studies over gevolgen van sprawl .. 60
 4.1.1. Aanpak en scope ... 60
 4.1.2. Infrastructuur ... 61
 4.1.3. Transport en mobiliteit .. 64
 4.1.4. Publieke dienstverlening ... 68
 4.1.5. Bouwkosten en verbruik woningen ... 71
 4.1.6. Gezondheid .. 73
 4.1.7. Sociale effecten .. 74
Onderdeel 1: Sociale en economische aspecten van sprawl in Vlaanderen

- **4.1.8. Economische ontwikkeling**
- **4.1.9. Behoud van open ruimte**
- **4.1.10. Scenario-analyses**
- **4.1.11. Conclusies literatuurstudie**

Onderdeel 2: Huidige meerkosten van sprawl in Vlaanderen

- **4.2.1. Methodologie**
- **4.2.2. Infrastructuur**
- **4.2.3. Transport en mobiliteit**
- **4.2.4. Verlies van open ruimte en ecosysteemdiensten**
- **4.2.5. Overige meerkosten**
- **4.2.6. Niet gekwantificeerde meerkosten**
- **4.2.7. Conclusies huidige meerkosten**
- **4.2.8. Maatschappelijke versus private meerkosten**

Onderdeel 3: Toekomstscenario’s

- **5.1. Inleiding**
- **5.2. Methodologie**
- **5.2.1. RuimteModel Vlaanderen**
- **5.2.2. Analyse van het voorkomen van sprawl en berekening van maatschappelijke kosten**
- **5.3. Resultaten**
- **5.3.1. Ruimtelijke toekomstscenario’s voor Vlaanderen**
- **5.3.2. Maatschappelijke kosten voor alternatieve toekomstscenario’s**

Onderdeel 4: Een maatschappelijke discussie over urban sprawl in Vlaanderen opzetten

- **6.1. Belang van een maatschappelijke discussie**
- **6.2. Visie op de maatschappelijke discussie over Urban Sprawl in Vlaanderen**
- **6.3. Aanpak van de maatschappelijke discussie**
- **6.3.1. Doelgroepen en doelstellingen**
- **6.3.2. Opzet**
- **6.4. Verwachte resultaten en vervolg**

Conclusies en aanbevelingen

- **7.1. Vlaanderen is de sprawl kampioen in Europa**
- **7.2. De maatschappelijke kosten van sprawl zijn hoog**
- **7.3. De keuzes die we vandaag maken zullen vooral een effect hebben op de langere termijn**
- **7.4. Professionele actoren als trekkers van de maatschappelijke dialoog**
- **7.5. Aanbevelingen voor verder onderzoek en toepassing van de resultaten**
- **7.5.1. Werk aan een gedragen business-as-usual scenario**
7.5.2. Verhoog het maatschappelijk bewustzijn van de maatschappelijke kosten van urban sprawl. .. 170
7.5.3. Zet rekenmethodes uit om de baten van een verhoogd ruimtelijk rendement standaard onderdeel te maken van ruimtelijke beslissingen. ... 171
7.5.4. Werk aan een community of practice. ... 171
7.5.5. Analyseer financierende instrumenten en breng dit zoveel mogelijk in overeenstemming met de werkelijke kosten... 171
7.5.6. Hou opties voor de lange termijn open.. 172
7.5.7. Vertaal scenario’s naar de praktijk.. 172
7.4.7. Onderzoek bijkomende kostenposten... 173
7.5.8. Investeer in een gedragsveranderingsproces .. 173
7.5.8.1. Richting aangeven ... 174
7.5.8.2. Doelgroepen verfijnen... 174
7.5.8.3. Hefbomen identificeren ... 174
7.5.8.4. Strategie en plan van aanpak ... 177
7.5.8.5. Evalueer .. 177
7.5.8.6. Deel inzichten ... 177
8. Bronnen.. 178
Bijlage 1: Gebruikte wegtypes voor analyse .. 185
Bijlage 2: technische info ruimtebeslagindicator ... 191
Lijst met figuren

Figuur 2: Sprawl typologiekaart voor Vlaanderen .. 15
Figuur 3: Maatschappelijke kosten en kostendrijvers voor infrastructuur per type 16
Figuur 4: Maatschappelijke kosten en kostendrijvers voor mobiliteit per type 17
Figuur 5: Maatschappelijke kosten en kostendrijvers voor verlies aan ecosysteemdiensten per type 17
Figuur 6: Evolutie van ruimtebeslag volgens de drie scenario’s ... 18
Figuur 7: Jaarlijkse baat in 2050 t.o.v. het GAU-scenario in miljoen € ... 19
Figuur 8: Sprawl in het gebied Antwerpen-Gent-Brussel uit ‘after sprawl’ (De Geyter et al., 2002) 21
Figuur 9: Mate van urban sprawl aan de hand van de WUP-indicator voor 32 Europese landen (EEA, 2016) ... 24
Figuur 10: Mate van urban sprawl aan de hand van 5 indicatoren voor België (blauw) ten opzichte van het gemiddelde voor alle 29 onderzochte OESO landen (rode stippellijn) (OECD, 2018) 25
Figuur 11: De drie dimensies van urban sprawl .. 26
Figuur 12: Schematisch overzicht van de berekening van WUP volgens EEA (2016) 27
Figuur 13: Vier alternatieve inputdata voor de bebouwingskaart .. 32
Figuur 15: WUP 2009 voor Benelux, resultaat uit EEA urban sprawl rapport (2016) 34
Figuur 16: WUP en diens deelindicatoren DIS,PBA en LUP per land, 2009, resultaat uit EEA urban sprawl rapport (2016) ... 35
Figuur 17: WUP berekend op een 1ha resolutie op basis van Copernicus ‘Imperviousness’ (linksboven), de verhardingskaart van AIV (linksonder), de gebouwenlaag uit het landgebruiksbestand (rechtsboven) en het ruimtebeslag (rechtsbeneden) .. 37
Figuur 18: Cumulatieve relatieve verdeling van WUP waarden voor 1ha-cellen voor de vier alternatieven ... 38
Figuur 19: WUP-resultaatkaarten voor de vier alternatieve inputs, zoom: regio Turnhout - Oud-Turnhout .. 39
Figuur 20: Regio Turnhout verschillende woonomgevingen .. 39
Figuur 21: WUP geaggregeerd op het niveau van de gemeenten .. 41
Figuur 22: WUP geaggregeerd op het niveau van de statistische sectoren ... 41
Figuur 23: ‘Filterkaart’ van WUP op 1ha resolutie, gebaseerd op ruimtebeslag 42
Figuur 24: Zwart-wit kaart voor sprawl op basis van de WUP-maat met grenswaarde 10 43
Figuur 25: Inwoners in Vlaanderen in verschillende sprawl-klassen ... 43
Figuur 26: Zwart-wit kaart per statistische sector op basis van de WUP-maat met grenswaarde 10 44
Figuur 27: Zwart-wit kaart voor sprawl per gemeente op basis van de WUP-maat met grenswaarde 10 .. 45
Figuur 29: Evolutie van WUP in de periode 1976 – 2000 in absolute termen (boven) en relatieve termen (onder) ... 47
Figuur 30: Evolutie van de WUP op niveau van de gemeenten in relatieve termen (afwijking ten opzichte van de standaardafwijking) .. 47
Figuur 31: Luchtfoto’s voor extreme WUP waarden in Vlaanderen .. 48
Figuur 32: Urban sprawl matrix met 13 klassen ... 49
Figuur 33: Gemiddelde indicatorwaarde per klasse ... 52
Figuur 34: Overzicht gemiddelde indicatorwaarde voor clusters van klassen 53
Figuur 35: Overzicht kencijfers per type ... 53
Figuur 36: Urban sprawl matrix met aanduiding clusters ... 54
Figuur 37: Urban sprawl typologie in kaart .. 56
Figuur 38: Urban sprawl typologie oppervlakte verdeling (links) en inwonersverdeling (rechts) voor Vlaanderen.. 57
Figuur 39: Urban sprawl typologie inwonersdichtheid in inwoners per ha (Vlaanderen) 58
Figuur 40: Lacunarity index op 1km² ... 59
Figuur 41: Lacunarity index op 1ha, uitsnede voor de regio Mechelen – Keerbergen (onder, links) en de regio Turnhout (onder, rechts) .. 59
Figuur 42: Impact van compacte woningtypes op financiële kosten over de levenscyclus 72
Figuur 43: Infographic kostenverschil gemeentelijke uitgaven urban en suburban op basis van data van Halifax, Canada (Smart Prosperity Institute, 2018) .. 79
Figuur 44: Stapsgewijze berekening huidige kosten van sprawl in Vlaanderen 84
Figuur 45: Relatief aandeel per sprawltype in Vlaanderen voor diverse indicatoren 85
Figuur 46: Lopende meters lokale weg per gebouw voor de verschillende sprawl types 93
Figuur 47: Jaarlijkse kosten infrastructuur (wegen en nutsvoorzieningen) per gebouw voor de verschillende sprawl types .. 94
Figuur 48: Rioleringstraad in de verschillende sprawltypes in 2015 95
Figuur 49: Vereiste investeringen voor geplande riolering voor de verschillende sprawl-types in Vlaanderen ... 95
Figuur 50: Vereiste investeringen kosten in € per aan te sluiten gebouw 95
Figuur 51: Overzicht van de woonlocaties van de OVG respondenten in Vlaanderen 99
Figuur 52: Gemiddeld aandeel van hoofdmodus per trip per type van urban sprawl 100
Figuur 53: Gemiddeld aantal kilometers per participant per dag, woonachtig in de types van urban sprawl .. 100
Figuur 54: Reistijd met de auto in uren per week per persoon, woonachtig in de types van urban sprawl .. 101
Figuur 55: Gemiddeld autobezit per huishouden voor de verschillende sprawltypes in Vlaanderen ... 101
Figuur 56: Aandeel van de woonlocaties van de OVG-respondenten per sprawl-type in Vlaanderen in functie van ontwikkelingskansen of de knooppuntwaarde openbaar vervoer en nabijheid van voorzieningen .. 102
Figuur 57: Verharding per gebouw voor verschillende sprawl-types 108
Figuur 58: Verlies aan ecosysteemdiensten per gebouw voor verschillende sprawl-types 108
Figuur 59: Gebruikte modus voor verdeling post in brievenbussen door bpost in diverse types gemeenten .. 114
Figuur 60: Procentueel aandeel van gebouwen in overstromingsgevoelig gebied per sprawlklasse .. 116
Figuur 61: Infographic, huidige maatschappelijke kosten voor infrastructuur 124
Figuur 62: Infographic, maatschappelijke investeringskosten voor resterende rioleringsinfrastructuur .. 125
Figuur 63: Infographic, huidige maatschappelijke kosten voor mobiliteit 126
Figuur 64: Infographic, huidige maatschappelijke kosten voor open ruimte (ecosysteemdiensten) .. 127
Figuur 65: Prognoses voor tewerkstelling en inwoners (Federaal Planbureau) 131
Figuur 66: Synthesekaart met 16 types op basis van knooppuntwaarde en voorzieningenniveau .. 133
Figuur 67: Gebieden geselecteerd voor gerichte verdichting in BRV-scenario: kernen en Agebieden ... 133
Figuur 68: Gebieden geselecteerd voor gerichte verdichting in AUS-scenario: kernen in A (rood), B (geel) en C-gebieden (groen) .. 133
Figuur 69: Evolutie van het bijkomend ruimtebeslag per dag voor de 3 scenario’s 138
Figuur 70: Evolutie van het totale ruimtebeslag in Vlaanderen voor de 3 scenario’s 139
Figuur 71: Evolutie oppervlakte per sprawltype per scenario in verschillende tijdsstappen147
Figuur 72: Evolutie aantal inwoners per sprawltypes per scenario ...149
Figuur 73: Evolutie oppervlakte per landge bruik per scenario in verschillende tijdsstappen153
Figuur 74: Evolutie van hoeveelheid lokale wegenis in het GAU, BRV- en AUS-scenario155
Figuur 75: Evolutie van de jaarlijkse hoeveelheid personenkilometers met de auto in het GAU, BRV- en AUS-scenario ..155
Figuur 76: Evolutie van de jaarlijkse hoeveelheid verharding in het GAU, BRV- en AUS-scenario ..155
Figuur 77: Jaarlijkse baten van BRV en AUS-scenario t.o.v. GAU-scenario in miljoen € per jaar. 156
Figuur 78: infographic monetarisatie van de alternatieve toekomstscenario’s ‘verdere inname open ruimte’ (GAU), ‘terugdringen inname open ruimte’ (BRV) en ‘open ruimte teruggeven’ (AUS) ..157
Figuur 79: Netto contante waarde cumulatieve baten van BRV en AUS-scenario t.o.v. GAU- scenario in miljoen € ..158
Figuur 80: Kerncijfers voor de verschillende sprawl-types in Vlaanderen ...165
Figuur 81: geobserveerde groei bebouwde terreinen per dag (op basis van Statbel statistieken) ..169
Figuur 82: geobserveerde (op basis van Statbel statistieken) dichtheid (in blauw) en gesimuleerde dichtheid (rood) volgens het GAU-scenario ..170
Lijst met tabellen

Tabel 1: Overzicht nodige input per indicator .. 30
Tabel 2: analyse van WUP per landgebruik (2016, VITO) .. 40
Tabel 3: Overzicht indicatoren met bron en bewerking .. 50
Tabel 4: Schaal- en densiteitsvoordelen voor investeringskosten per inwoner voor netwerkinfrastructuur in Spaanse gemeenten in 2005 .. 63
Tabel 5: Effecten van kenmerken van compacte en slimme bebouwing op personentransport (weg, wandelen en openbaar vervoer) ... 67
Tabel 6: Schaal en densiteitsvoordelen voor gemeentelijke uitgaven per inwoner in Spaanse gemeenten (Sollé-Ollé et al., 2015) .. 69
Tabel 7: Effecten van compacte wijken op volksgezondheid en auto ongevallen 74
Tabel 8: Mediana schatting investeringskosten wegenis inclusief nutsvoorzieningen per lopende meter weg (Trigaux et al., 2017) .. 88
Tabel 9: Kengetallen gebruikt voor kostenberekening lokale infrastructuur in € per lopende meter ... 91
Tabel 10: Gemiddelde hoeveelheid lokale wegeninfrastructuur voor de verschillende sprawl-types in Vlaanderen ... 93
Tabel 11: Jaarlijkse kosten voor wegenis en nutsinfrastructuur per gebouw voor de verschillende sprawl types.. 93
Tabel 12: Private en externe kosten voor personenvervoer en verschillende modi in 2014 (op basis van Delhaeye et al., 2017) ... 97
Tabel 13: Gemiddelde transportkost in € per persoon per dag voor verschillende sprawl-types in Vlaanderen ... 102
Tabel 14: Gemiddelde transportkost in € per huishouden per jaar voor verschillende sprawl-types in Vlaanderen .. 102
Tabel 15: Kwantificering en waardering van ecosysteemdiensten voor akker- en graslanden (Vlaams gemiddelde, op basis van resultaten ECOPLAN-project) ... 106
Tabel 16: Indicatoren ruimtebeslag voor de verschillende sprawl types .. 106
Tabel 17: Gemiddelde groote bewoonde percelen in de verschillen spawl-types 107
Tabel 18: Verhardingsgraad (publieke en private ruimte) in m² voor verschillende sprawl-types in Vlaanderen ... 107
Tabel 19: Verlies aan ecosysteemdiensten per gebouw voor verschillende sprawl-types 108
Tabel 20: Overzicht geanalyseerde beleidsvelden – percentage en grootte van totale gemeentelijke uitgaven in 2016 .. 109
Tabel 21: Referentiekosten FostPlus 2015 voor diverse soorten materialen 112
Tabel 22: Hoeveelheid huisvuil en restafval in stedelijke en landelijke gemeentes volgens verschillende inzamelwijzes (OVAM, 2015) ... 112
Tabel 23: Gemiddelde reisafstand en reistijd per pakje in stedelijke, landelijke en randstedelijke context door bpost ... 114
Tabel 24: Veronderstelde jaarlijkse meerkost in € per hectare voor infrastructuur bij evoluties tussen sprawl-types .. 135
Tabel 25: Veronderstelde jaarlijkse kosten in € per inwoner voor mobiliteit bij de verschillende sprawl-types ... 135
Tabel 26: Veronderstelde jaarlijkse bijkomende levering van ecosysteemdiensten in € per hectare bij evoluties tussen landgebruik .. 136
1. Managementsamenvatting

Dit onderzoek is het resultaat van een opdracht van het Vlaams Planbureau voor Omgeving om urban sprawl in Vlaanderen te monetariseren. Het doel van de opdracht is inzicht te verwerven in de maatschappelijke kosten en baten van (ruimtelijk) beleid dat ageert tegen urban sprawl, om zo een publiek debat op gang te brengen en het maatschappelijk en politiek draagvlak van het ruimtelijk en mobiliteitsbeleid te verhogen (Vermeiren et al., 2019).

1.1. Context

België, maar vooral Vlaanderen, kent in vergelijking met de rest van Europa een zeer hoge verstedelijkingsgraad. De stijgende bevolkingsgroei leidt tot een groeiende vraag naar onder andere woningen, infrastructuur en mobiliteit. Tot op vandaag veroorzaakt dit een bijkomend ruimtebeslag van zes hectare per dag. We weten dat dit problematisch is voor tal van ecosysteemdiensten zoals waterberging, voedselvoorziening en koolstofopslag.

Deze intensieve groei in ruimte-inname zorgt ervoor dat we in een rapport van het Europese Milieugentschap (European Environment Agency, 2016) de koplopers zijn inzake urban sprawl. Die term verwijst naar een verstedelijkingsproces met een lage, monofunctionele dichtheid waarbij de de bevolking sterk auto-afhankelijk is door de sterk groeiende pendelafstand. Ook hiervan ervaren we dagelijks de negatieve gevolgen zoals files en verkeersongevallen.

Een verandering dringt zich dus op. Een belangrijke stap om inzicht te krijgen in het fenomeen urban sprawl in Vlaanderen is het berekenen van de maatschappelijke kosten ervan. Het volstaat daarbij niet om te weten dat er maatschappelijke kosten zijn. We moeten ook weten hoe die kosten in de toekomst verwacht worden te evolueren afhankelijk van bepaalde keuzes die al dan niet genomen worden in het ruimtelijk beleid dat we voeren.

1.2. Analyseren van het voorkomen van sprawl in Vlaanderen

In 2016 bracht het Europees Milieugentschap voor het eerst de graad van urban sprawl voor het volledige Europese grondgebied in kaart. Het onderzoek dat hieraan voorafging ontwikkelde een rekenmaat, Weighted Urban Proliferation (WUP), die rekening houdt met stedelijke omvang, mate van ruimtelijke versnipping en activiteitsgraad (inwoners plus tewerkstelling). Op deze kaarten wordt duidelijk dat de hele Benelux zich kenmerkt door een hoge WUP of een hoge graad van urban sprawl, af te lezen aan de donkerrode vlekken. Deze WUP-maat leende zich echter niet meteen voor een toepassing op Vlaanderen omdat de kaarten voor Europa enkel rekening houden met effectief verharde oppervlakte en niet met residentiële tuinen bijvoorbeeld, terwijl die toch ook een grote rol spelen in het fenomeen van urban sprawl. Daarom herrekenden we de kaart voor Vlaanderen door gebruik te maken van het ruimtebeslag en de totale activiteitsgraad. Wanneer we dan alles wat op de Europese kaart donker oranjerood ingekleurd staat, in Vlaanderen als urban sprawl benoemen, blijkt dat dit maar liefst 44 procent van de oppervlakte beslaat en daarmee 95 procent van de Vlaamse bevolking omvat. Enkel de centra van onze grootste steden, de grotere open ruimte en de natuurgebieden blijven van het fenomeen gevrijwaard.
Vanuit de Europese benadering scoren in Vlaanderen dus zowel open ruimte als dicht verstedelijkte gebied laag op de WUP-schaal. Om voor Vlaanderen infrastructuur, mobiliteit en verlies aan ecosysteemdiensten te kunnen monitoriseren, was het echter belangrijk om wél een onderscheid te kunnen maken tussen beide. Open ruimte en dicht verstedelijkte gebied vertonen in Vlaanderen immers duidelijke verschillen qua benodigde infrastructuur, aantal afgelegde kilometers en openruimte-inname. Daarom stelden we een sprawl-typologiekaart op. Hiervoor combineerden we de WUP-kaart met een kaart van de activiteitsgraad.

Dit bracht ons - naast een categorie niet/dun bebouwde ruimte en een kleine restcategorie die eveneens dun of niet bevolkt en bebouwd is en daardoor niet relevant voor de kostenberekening, - tot vier bebouwingstypes met specifieke kenmerken.

Het type met de hoogste activiteitsgraad in Vlaanderen (meer dan 50 inwoners of tewerkgestelden per hectare) heeft een oververtegenwoordiging van rijwoningen, kleine tuintjes en een hoog percentage ruimtebeslag. Deze kenmerken horen typisch bij de Vlaamse stadskernen. Aan het andere uiterste van de activiteitsgraad (minder dan vijf inwoners of tewerkgestelden per hectare) vinden we een zone die gedomineerd wordt door vrijstaande woningen met grote tuinen en een laag percentage ruimtebeslag (gemiddeld 25 procent). We
noemen dit type verspreide bebouwing. Daartussen zijn zones te vinden met een gemiddelde activiteitsgraad in vergelijking met de rest van Vlaanderen (15-50) en een mix aan vrijstaande, halfopen en gesloten woningen. Deze gebieden vinden we typisch in dorpskernen en stadsranden. En dan rest nog het laatste type, waar een lage activiteitsgraad (5-15) zich manifesteert in grotendeels vrijstaande woningen. In deze gebieden vinden we een groot aandeel van de typisch Vlaamse verkavelingen en lintbebouwing.

Figuur 2: Sprawl typologiekaart voor Vlaanderen

1.3. De maatschappelijke kosten van sprawl in Vlaanderen

Aan de hand van de vierdelige typologie en de ruimtelijke indicatoren die hieraan verbonden zijn, berekenden we de maatschappelijke kosten van het huidige bebouwingspatroon in Vlaanderen. In een volgende stap gebruikten we ruimtelijke landgebruiksscenario’s om te bekijken hoe de maatschappelijke kosten of baten evolueren wanneer bepaalde ruimtelijke trends voortgezet dan wel doorbroken worden.

Een doorgedreven literatuuronderzoek vormde het uitgangspunt voor gesprekken met experts van dienstverlenende organisaties en overheden om te komen tot cijfers die de verschillende maatschappelijke kostenposten uitdrukken. Algauw bleek dat het niet voor alle thema’s mogelijk is om de kosten te berekenen. Voor dienstverlening zoals postbedeling en afvalinzameling bijvoorbeeld zijn er onvoldoende data beschikbaar. Andere zaken zoals gemeentelijke uitgaven voor politie, brandweer en onderwijs zijn moeilijk te koppelen aan het fenomeen urban sprawl. Toch slaagden we erin om significante cijfers te verzamelen voor drie verschillende kostenposten: infrastructuur, mobiliteit en verlies aan ecosysteemdiensten (via verlies aan open ruimte). Hoewel de thema’s beperkt zijn, tonen ze wel een duidelijke trend aan: hoe verspreider de bebouwing, hoe hoger de maatschappelijke kosten.
1.3.1. Infrastructuur

Onder de maatschappelijke kosten van infrastructuur verstaan we de kosten die gepaard gaan met de aanleg en onderhoud van wegen, nutsvoorzieningen (water, gas, elektriciteit, riolering) en verlichting. Deze kosten worden berekend per lopende meter lokale weg. Dit zijn alle wegen die geen bovenlokale verbindende functie hebben. De jaarlijkse kost per lopende meter is in stedelijk gebied ongeveer 30 procent hoger dan in landelijk gebied. Bij verspreide bebouwing blijkt er per gebouw tien keer meer infrastructuur nodig te zijn dan in een stadskern. Daardoor ligt de jaarlijkse kostprijs van infrastructuur er per gebouw zeven keer hoger.

Binnen het thema infrastructuur richtten we extra aandacht op investeringen in riolering. Vandaag zijn nog niet alle woningen in Vlaanderen aangesloten op de riolering. Terwijl de rioleringsgraad in stadskernen, dorpskernen en stadsranden bijna 100 procent is, daalt hij bij verkavelingen en linten tot 77 procent; bij verspreide bebouwing zakt dit verder tot gemiddeld 35 procent van de woningen. Op basis van het aantal lopende meters riolering dat nog gepland is in verkavelingen, linten en verspreide bebouwing (AWIS, 2015) en een voorzichtig geraamde investeringskost van 400 euro per lopende meter, schatten we de vereiste investering in riolering voor deze types op ongeveer 3,7 miljard euro of ongeveer 12.500 euro tot 20.300 euro per gebouw.

Figuur 3: Maatschappelijke kosten en kostendrijvers voor infrastructuur per type

1.3.2. Mobiliteit

Op basis van de resultaten van het Onderzoek VerplaatsingsGedrag kregen we inzicht in de manier waarop mensen zich verplaatsen (aantal afgelegde kilometers per modus per huishouden per dag) in de verschillende sprawltypes. Hieruit blijkt dat wie buiten de stadskern woont, vaker de auto gebruikt voor verplaatsingen. In stadskernen gebeuren nog 49 procent van het aantal verplaatsingen met de auto, maar in verspreide bebouwing loopt dit op tot 77 procent. Omgekeerd gebeurt in een stadskern 26 procent van de trips te voet, terwijl dit in verspreide bebouwing slechts 5 procent bedraagt. Ook het openbaar vervoer (trein en bus) wordt het meest gebruikt in de stadskern met 10 procent van alle trips in vergelijking met 4 procent van alle trips in de andere sprawltypes. De gemiddelde reistijd per persoon met de personenwagen in het type verspreide bebouwing bedraagt 5 uur per week terwijl dit voor een stadskern 3,3 uur is.

Naast de private kost van verplaatsingen die particulieren maken, worden nog een heel aantal bijkomende externe kosten veroorzaakt. Hieronder vallen: externe kosten veroorzaakt omwille van luchtvervuiling, klimaatverandering, file, geluidshinder, ongevallen en – in het geval van vrachtwagens, spoor, binnenvaart en zeevaart – slijtage en schade aan de infrastructuur enzovoort. Deze eenheidskosten per afgelegde kilometer in combinatie met het aantal afgelegde kilometers per vervoersmodi resulteert in een maatschappelijke kost van mobiliteit die minstens
dubbel zo groot is voor huishoudens in verspreide bebouwing tegenover huishoudens in de stadskern.

Figuur 4: Maatschappelijke kosten en kostendrijvers voor mobiliteit per type

1.3.3. Ecosysteemdiensten

Ecosysteemdiensten zijn de diensten die ecosystemen leveren ten voordele van de mens: voedselproductie, houtoogst, watervoorziening, koolstofopslag in biomassa, luchtkwaliteit, geluidsreductie, recreatie en vastgoedmeerwaarde dankzij zicht op groen. Vooral landbouwgrond (akkers en graslanden) zal verdwijnen ten voordele van bebouwing. De toenemende verharding die gepaard gaat met verstedelijkking, zorgt niet alleen voor een verlies aan open ruimte, maar ook aan ecosysteemdiensten. Als we alle verharding per type bekijken, inclusief de verharding in de niet-private ruimte, bedraagt deze in een stadskern 67 procent. Dit daalt tot 9 procent in geval van verspreide bebouwing. We zien dus procentueel minder verharding buiten de stadskern. Maar uitgedrukt per gebouw varieert verharding van 370 m² per gebouw tot 1.700 m² per gebouw of ongeveer een vervijfvoudiging. Als we het verlies aan ecosysteemdiensten dat daar het gevolg van is vertalen naar euro’s, varieert dat tussen 90 euro en 420 euro per gebouw per jaar.

Figuur 5: Maatschappelijke kosten en kostendrijvers voor verlies aan ecosysteemdiensten per type
1.4. Toekomstscenario’s

Hoe zullen deze kosten evolueren als urban sprawl zich verder doorzet in Vlaanderen? Welke winsten zijn er te boeken met maatregelen om deze sprawl tegen te gaan? Om daarover uitspraken te kunnen doen moesten we zicht krijgen op de toekomstige nood aan infrastructuur, mobiliteit en ecosysteemdiensten. Daarvoor maakten we gebruik van het RuimteModel Vlaanderen (https://ruimtemodel.vlaanderen/) waarin we ruimtelijk expliciete toekomstscenario’s kunnen doorrekenen. Op basis van de resultaten uit dit ruimtemodel konden we dan een inschatting maken van de financiële effecten van elk van de scenario’s.

Voor de periode 2013-2050 kozen we drie scenario’s die aanleiding geven tot een alternatieve groei van het ruimtebeslag en bijgevolg ook een verschillende impact hebben op infrastructuur, mobiliteit, verlies aan ecosysteemdiensten én de daarbij horende maatschappelijke kosten.

1. **Het Growth-as-usual (GAU) scenario.** Dit scenario houdt de huidige ruimte-inname van bijkomend 6ha ruimtebeslag per dag aan. Dat leidt tot een sterk toenemend ruimtebeslag tegen 2050.

2. **Het Beleidsplan Ruimte Vlaanderen (BRV) scenario.** Dit een scenario gaat uit van een sterke verdichting, gebaseerd op de strategische visie Vlaanderen (goedgekeurd op 13 juli 2018) met als doel in 2040 de groei van het ruimtebeslag terug te brengen tot 0 ha per dag. De verdichting simuleren we in kernen en goed gelegen locaties.

3. **Het Anti-urban sprawl (AUS) scenario.** Dit is een extremer scenario dat als doel heeft het ruimtebeslag niet enkel terug te brengen naar 0 maar zelfs na verloop van tijd het ruimtebeslag terug te dringen en plaats te maken voor natuur, landbouw, bos...

![Figuur 6: Evolutie van ruimtebeslag volgens de drie scenario's](image)

Het totale ruimtebeslag ligt in 2050 in het BRV-scenario 57.000 hectare lager en in het AUS-scenario 75.000 hectare lager dan in het GAU-scenario. Dit creëert baten op vlak van infrastructuur, mobiliteit en behoud aan open ruimte. De vereiste hoeveelheid aan bijkomende infrastructuur verlaagt met ongeveer 55 procent of 5.700 km in het BRV-scenario en met ongeveer 77 procent of 8.000km in het AUS. De hoeveelheid personenvervoer met de auto daalt met 27% of 4 miljard personenkilometers in het BRV-scenario en met 45 procent of 7 miljard personenkilometers in het AUS-scenario. De hoeveelheid verharde oppervlakte daalt met ca 8.500 hectare in het BRV-scenario en 18.500 ha in het AUS-scenario. Dit creëert in zijn totaaliteit een jaarlijkse baat in 2050 van ongeveer 1,7 miljard euro in het BRV-scenario en 2,8 miljard euro in het AUS-scenario.
1.5. Maatschappelijke discussie

In de studie becijferden we drie thema’s: infrastructuur, mobiliteit en open ruimte. Dat neemt niet weg dat er nog andere maatschappelijke kostenposten aan sprawl verbonden zijn, zij het mogelijks meer verborgen of minder goed kwantitatief aantoonbaar. Om een duidelijker zicht te krijgen op de totale omvang van maatschappelijke kosten van urban sprawl in Vlaanderen is het een zaak om meer kwantitatieve data te verzamelen over relevante thema’s.

Toch blijkt er ook nu al een duidelijke trend: hoe verspreider we wonen, hoe hoger de maatschappelijke kosten. De urgentie rond het verlies van open ruimte van die aard dat wachten op verder onderzoek niet wenselijk is. Een volgende vraag is dan op welke manier we deze kennis kunnen inzetten om een verdere verstedelijking van onze open ruimte tegen te gaan.

Om die reden trachten we vanuit deze resultaten de maatschappelijke dialoog rond het fenomeen van urban sprawl te voeden. Dit deden we op de Werelddag van de Stedenbouw (op 29 november 2018) met een publiek van experten. Maar ook het politieke niveau en het brede publiek wordt op de hoogte gebracht van deze resultaten aan de hand van een aantal communicatieproducten. Uiteindelijk trachten we zo bij te dragen aan een mentaliteitswijziging die de weg plaveit voor een ander ruimtelijk beleid op korte termijn. De resultaten van dit onderzoek zijn hier echter een eerste stap. Verder onderzoek en vervolgstappen moeten gezet worden om de verworven inzichten te gebruiken en om te zetten in een beleidsstrategie met concrete ruimtelijke beslissingen. Die ruimtelijke beslissingen moeten hun weg naar de praktijk vinden op verschillende niveaus: niet enkel Vlaanderen breed, of via lokale besturen, maar ook via burgers.
2. Inleiding

2.1. Leeswijzer

Dit rapport beschrijft de resultaten voor de opdracht ‘Monetarisering van Urban Sprawl in Vlaanderen’. Het rapport is opgebouwd uit 8 hoofdstukken die chronologisch rapporteren over het gevolgde plan van aanpak en de studieresultaten:

- Hoofdstuk 1 vat de resultaten samen in een managementssamenvatting.
- Hoofdstuk 2 geeft als inleiding meer informatie over de doelstelling en algemene aanpak van het project.
- Hoofdstuk 3 vangt aan met een rapportering van Onderdeel 1: Analyseren van het voorkomen van sprawl in Vlaanderen. In dit hoofdstuk wordt aan de hand van ruimtelijke analyses sprawl in Vlaanderen in kaart gebracht en geanalyseerd.
- Hoofdstuk 4 behandelt Onderdeel 2 en verzamelt cijfermateriaal over de maatschappelijke kosten van sprawl in Vlaanderen.
- Hoofdstuk 5 beschrijft aan de hand van ruimtelijke toekomstscenario’s de financiële impact van alternatieve ruimtelijke ontwikkelingen in Vlaanderen tot 2050.
- Hoodstuk 6 reflecteert over de communicatieve werkzaamheden die plaatsvonden in Onderdeel 3 om de maatschappelijke discussie over urban sprawl in Vlaanderen op te zetten.
- Hoofdstuk 7 geeft als conclusie enkele bedenkingen en aanbevelingen bij het onderzoek.
- Hoofdstuk 8 bevat een lijst met geraadpleegd bronmateriaal.

De wetenschappelijk inhoudelijke hoofdstuk 3, 4 en 5 geven telkens een overzicht van de gevolgde methodologie met aansluitend een rapportering van de resultaten.

2.2. Situering en doelstellingen van de opdracht

Urban sprawl is een relevant fenomeen in Vlaanderen (De Geyter, 2002; Devisch, Veestraeten, & Thewissen, 2016; Verbeeck, Boussauw, & Pisman, 2014). In 2002 presenteerde het Brusselse bureau Xaveer De Geyter-Architecten (XDGA) hun werk ‘After-Sprawl’ waarbij o.a. een kaart werd getoond van sprawl in het gebied Brussel-Antwerpen-Gent (Figuur 8). Het boek bevat heel wat beeldmateriaal van het verspreide nederzettingspatroon in Vlaanderen en een vergelijking van Vlaanderen met andere regio’s in Europa.
Figuur 8: Sprawl in het gebied Antwerpen-Gent-Brussel uit ‘after sprawl’ (De Geyter et al., 2002)

In 2012 lanceerde de toenmalige Minister voor Ruimtelijke Ordening, Philippe Muyters, in de pers een discussie over de doorrekening van maatschappelijke kosten aan de bewoners van afgelegen woningen in Vlaanderen. Dit leidde tot een maatschappelijke discussie, maar niet direct tot concrete beleidseindeling. Meer recent (24/09/2015) stelde Ingrid Pira een parlementaire vraag over de maatschappelijke kosten van lintbebouwing-wegenonderhoud en verlichting. Ze vroeg onder meer of er studies bestaan die de meerkosten van lintbebouwing op het vlak van wegenaanneming, -onderhoud en verlichting en organisatie van openbaar vervoer in kaart brengen ten opzichte van compacte bouwvormen. In Vlaanderen bestaan hierover echter geen studies.

Verspreide bebouwing, of sprawl, en de behoefte aan een betere basisbereikbaarheid zijn issues in het concept Witboek van het Beleidsplan Ruimte Vlaanderen en het ontwerp Mobiliteitsplan Vlaanderen. Momenteel wordt een toekomstig ruimtelijk beleid vooropgesteld waarin de sprawl in Vlaanderen zou afnemen (of niet langer toenemen) door in te zetten op het verhogen van ruimtelijk rendement, door het bijkomend ruimtebeslag te beperken en door bij voorkeur nieuwe ontwikkelingen te situeren nabij bestaande voorzieningen en/of openbaar vervoerhaltes.

Het doel van deze opdracht is inzichten te verwerven in de maatschappelijke winsten door (ruimtelijk) beleid dat ageert tegen urban sprawl. Deze inzichten:

1. verhogen het maatschappelijk en politiek draagvlak van ruimtelijk en mobiliteitsbeleid;
2. verbeteren de opties van het ruimtelijk en mobiliteitsbeleid door keuzes te maken die maatschappelijk-economisch verantwoord zijn;
3. onderbouwen het ruimtelijk en mobiliteitsbeleid en laten toe de effecten op te volgen.

De opdracht bestaat hiervoor uit 4 onderdelen:
1. een analyse van het voorkomen van sprawl in Vlaanderen;
2. met externe stakeholders sprawl monetariseren in Vlaanderen;
3. met ruimtelijke toekomstscenario’s financiële en ruimtelijke effecten in beeld brengen;
4. een maatschappelijke discussie over sprawl in Vlaanderen opzetten.
2.3. Algemene aanpak

In deze opdracht worden 4 Onderdelen behandeld waarvan de eerste 3 gericht zijn op het produceren van inhoudelijke resultaten zoals kaarten en cijfermateriaal van: (1) de huidige toestand van urban sprawl, (2) maatschappelijke financiële impact van urban sprawl en (3) toekomstige ruimtelijke ontwikkelingen met hun impact in termen van urban sprawl. Parallel hieraan wordt in een vierde onderdeel een communicatietraject voorzien rond urban sprawl.

Onderstaande tabel geeft schematisch voor welke stappen worden ondernomen in de verschillende onderdelen. In de volgende hoofdstukken wordt per onderdeel de methodologie en de resultaten besproken.

Onderdeel 1: Analyseren van het voorkomen van sprawl in Vlaanderen
- Kwantificeren van urban sprawl in Vlaanderen
- Kwantificeren van urban sprawl 1976-2000 in Vlaanderen

Onderdeel 2: Monetariseren van gevolgen sprawl in Vlaanderen
- Literatuurstudie en quickscan van (meer)kosten urban sprawl
- Stakeholder overleg en aftoetsing van methodiek
- Oplijsting van kosten en eenheidskosten om urban sprawl te monetariseren

Onderdeel 3: Ruimtelijke toekomstscenario’s
- Inbouwen van algoritmes voor sprawl en waardering in het RuimteModel
- Definitie van scenario’s met opdrachtgever, experten en stakeholders
- Doorrekenen en analyseren van resultaten van scenario’s

Onderdeel 4: Maatschappelijke discussie over sprawl in Vlaanderen opzetten
- VRP labs
- Persartikels en tijdschriftartikel
- Wervende en educatieve video
- Studiedag
3. Onderdeel 1: Analyseren van het voorkomen van sprawl in Vlaanderen

3.1. Inleiding

Sprawl (urban en/of rural) wordt in de wetenschappelijke literatuur gebruikt als een term met verschillende betekenissen. De term verwijst zowel naar het proces waarbij stedelijke ontwikkelingen zich uitspreiden, naar het patroon van deze uitbreiding als naar zowel de oorzaken en de gevolgen van uitbreidingspraktijken (Galster et al., 2001; EEA, 2006; EEA, 2016). In de wetenschappelijke literatuur bestaan definities die in mindere of meerdere mate een focus leggen op deze verschillende aspecten (patroon, proces, oorzaak, gevolg). In het kader van het Onderdeel 1 van de opdracht wordt voorerst de focus gericht op sprawl als patroon van verstedelijkte versus niet-verstedelijkde ontwikkelingen, en wordt gewerkt aan de kwantificering ervan.

Urban sprawl is een fenomeen dat in Vlaanderen zeker de nodige aandacht verdient. Uit enkele recente studies blijkt dat België hoog scoort op de mate waarin urban sprawl voorkomt in vergelijking met andere regio’s in Europa. Het Europees Milieuagentschap voerde in 2016 een studie uit waarin de mate van urban sprawl in 32 Europese landen werd onderzocht in de periode 2006-2009. Uit deze studie blijkt dat België (samen met Nederland) van alle geanalyseerde landen met de hoogste graad van sprawl kampt. Dit zien we op Figuur 9: Nederland en België behalen de hoogste sprawl score volgens de rekenmethode die het rapport beschrijft, namelijk de methode van de weighted urban proliferation (WUP). Dit is een rekenmaat voor urban sprawl. Een hoge waarde voor WUP betekent een hoge mate van urban sprawl. Deze methode wordt in het onderdeel Methodologie verder besproken.

Figuur 9: Mate van urban sprawl aan de hand van de WUP-indicator voor 32 Europese landen (EEA, 2016)

1 11 Belgische stedelijke gebieden werden onderzocht: Brussel, Antwerpen, Luik, Gent, Charleroi, Brugge, Namen, Leuven, Bergen, Kortrijk en Oostende
met Luxemburg, de hoogste score indien gekeken wordt naar het aandeel van de bevolking dat
leeft in gebieden met een lage tot gemiddelde bevolkingsdichtheid (150 – 3500 inw/km²).

Figuur 10: Mate van urban sprawl aan de hand van 5 indicatoren voor België (blauw) ten
opzichte van het gemiddelde voor alle 29 onderzochte OESO landen (rode stippellijn) (OECD,
2018)

Deze bevindingen, in combinatie met de vaststelling dat Vlaanderen reeds voor ongeveer 1/3
ingenomen is door ruimtebeslag, onderstrepen de relevantie van het onderzoekstopic.

In het onderdeel 1 van de studie wordt het voorkomen van urban sprawl in Vlaanderen van
naderbij onderzocht. Op die manier worden gebieden aangeduid die in kleinere of grotere mate
onderhevig zijn aan urban sprawl en worden verschillende vormen waarin urban sprawl zich
manifesteert in Vlaanderen voorgesteld. Deze bevindingen leveren input voor het Onderdeel 2
die kosten zullen worden gekoppeld aan de verschillende vormen van urban
sprawl in Vlaanderen.

In dit hoofdstuk wordt eerst de methodologie waarop urban sprawl in kaart zal worden gebracht
besproken. Nadien wordt kort ingegaan op de gebruikte databronnen om urban sprawl te
kwantificeren en worden de resultaten besproken. Hierin wordt besproken:

- (i) hoe we vanuit de originele Europese WUP-maat voor urban sprawl tot een Vlaamse
bebouwingstypologie komen, die zal dienen als input voor de Onderdelen 2 en 3 van de
studie. En wordt op basis van de WUP-maat een historische analyse uitgevoerd voor
- (ii) Verder werden ook andere maten van sprawl geanalyseerd. De indicator
‘kernbebouwing, lintbebouwing en verspreide bebouwing’ wordt besproken die tot stand
 gekomen is door een analyse op gebouwniveau.
- (iii) Tot slot wordt gerapporteerd over de resultaten van alternatieve maten voor urban
sprawl in Vlaanderen.

3.2. Methodologie

3.2.1. Weighted urban proliferation

In eerste instantie zal urban sprawl worden gekwantificeerd aan de hand van de definitie zoals ze
wordt gebruikt in het rapport ‘Urban sprawl in Europe’ van de European Environment Agency
(EEA) uit 2016. Een definitie die overigens wordt overgenomen van het Zwitserse Federal Office
for the Environment (FOEN). Daarin wordt urban sprawl, kort gesteld, gedefinieerd als het patroon waarbij grotere gebieden worden aangetast door alleenstaande gebouwen of meer omvangrijke vormen van stedelijke uitbreidingen met lage dichtheden (EEA, 2006; EEA, 2016).

De definitie focust op drie zaken: (1) urban sprawl gaat over bebouwing, (2) die verspreid voorkomt en (3) waarbinnen de ruimte- enname door activiteiten (aantal inwoners of werkgelegenheid) hoog is. Het zijn ook die drie elementen die aan bod komen om het fenomeen in kaart te brengen met behulp van indicatoren. De drie elementen vormen ‘deelindicatoren’ (PBA, DIS en LUP) waarvan finaal een product gemaakt wordt (= WUP) om tot één samengestelde en geïntegreerde indicator van urban sprawl te komen:

1. **WUP – weighted urban profiliferation**: gewogen product van DIS, PBA en LUP.
2. **PBA – percentage of built-up areas**: absolute oppervlakte bebouwd per beschouwde oppervlakte-eenheid die bestudeerd wordt.
3. **DIS - dispersion of built-up areas**: kwantificering van verspreid karakter van de bebouwing per beschouwde oppervlakte-eenheid.
4. **LUP – land used per inhabitant or workplace**: land gebruikt per inwoner of werkplaats per beschouwde oppervlakte-eenheid.

De drie deelindicatoren zijn een kwantitatieve vertaling van de drie dimensies van urban sprawl. Deze worden in Figuur 11 visueel verduidelijkt. Figuur 12 geeft een schematisch overzicht van de berekening van WUP volgens de EEA (2016). Voor een meer uitvoerige beschrijving van de berekening van de WUP-indicator, verwijzen we naar het EEA rapport uit 2016.

<table>
<thead>
<tr>
<th>Figuur 11: De drie dimensies van urban sprawl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

| PBA – percentage of built-up areas: hoe groter de oppervlakte verstedelijk gebied, hoe hoger sprawl. WUP is dan ook evenredig aan PBA (Figuur 12). |
| DIS - dispersion of built-up areas: een zelfde oppervlakte verstedelijk meer verspreid (rechts) leidt tot meer sprawl. WUP is dan ook evenredig aan DIS (Figuur 12). Een extra wegingsfactor voor DIS wordt ingesteld om het effect te versterken. |
| LUP – land used per inhabitant or workplace: hoe meer inwoners of tewerkstelling per eenheid oppervlakte verstedelijk, hoe minder sprawl. Of, hoe hoger de oppervlakte verstedelijk per persoon, hoe hoger sprawl. WUP is evenredig met LUP(Figuur 12). Een extra wegingsfactor wordt ingesteld om WUP op locaties met een lage LUP de sprawl score (WUP) omlaag te halen. |
De WUP en zijn deelindicatoren worden berekend aan de hand van de ‘USM urban sprawl measures’ toolbox in ArcGIS waarmee ook de bewerkingen in het EEA rapport zijn uitgevoerd. De USM-toolbox laat toe om voor een gekozen studiegebied een resolutie voor de analyse van urban sprawl in te stellen (RU: ‘reporting unit’), en, op basis van fijne resolutie inputkaarten van bebouwing, bevolking (en tewerkstelling) kaarten te produceren van de urban sprawl indicatoren. In het EEA-rapport wordt gewerkt met verschillende RU:

- 1km² resolutie
- NUTS2 regio’s
- Landen

In deze studie zal worden gewerkt met een fijnere resolutie van 1ha. Voor deze resolutie wordt gekozen om gedetailleerd de ruimtelijke analyse van sprawl te kunnen uitvoeren en om een continue ruimtelijk beeld te verkrijgen dat niet onderhevig is aan (administratieve) begrenzingen. Tot slot moet in de berekening van WUP een horizon of perception (HP) ingesteld worden. Dit is de afstand die aangeeft op welke schaal urban sprawl in een landschap wordt gepercipieerd door personen. Het is binnen deze afstand (straal) dat de dispersie (DIS) van de bebouwde omgeving wordt gekwantificeerd. De gebruikte HP in de EEA-studie is 2km. Deze waarde werd in het rapport gekozen op basis van de resultaten van een gevoeligheidsanalyse door Orlitová et al. (2012). Bovendien zijn de gewichten in de WUP-formule gecalibreerd op basis van de resultaten met een HP van 2km. Het instellen van een andere HP moet bijgevolg ook leiden tot een nieuwe calibratie met o.a. nieuwe gewichten als gevolg. Dit zou eveneens leiden tot een ‘nieuwe’ sprawl-maat die niet meer vergelijkbaar is met de Europese resultaten. Daarom wordt in deze studie gewerkt met eenzelfde afstand.

3.2.2. Kernbebouwing, lintbebouwing, verspreide bebouwing
Conform het bestek wordt er naast het berekenen van de WUP ook werk gemaakt van het in kaart brengen van kernen, lintbebouwing en verspreide bebouwing. Voor de ontwikkeling van deze indicator wordt maximaal uitgegaan van een morfologische benadering en wordt, in de mate van het mogelijke, gewerkt met data op een zeer hoge resolutie (polygonen, 10x10m² rasterkaarten).
Dit staat in contrast met een juridische afbakening, zoals bijvoorbeeld in het RSV en de gebiedsafbakeningen van GRUP’s, of, een afbakening die rekening houdt met het activiteitenniveau zoals bijvoorbeeld in de afbakening van stedelijke, randstedelijke en landelijke gebieden (Vermeiren et al., 2017) en de studie Ontwikkelingskansen op basis van knooppuntwaarde en voorzieningen (Verachtert et al., 2016).

Het laat toe om de berekening in de toekomst te herhalen met het oog op het monitoren van urban sprawl. Dit algoritme werd verder ontwikkeld met directe inbreng van medewerkers van het departement Omgeving.

De afbakening van de kernen verloopt volgens een stappenplan, dat schematisch is beschreven in Box 1. Zodra de kernen in kaart zijn gebracht, worden de resterende bebouwde percelen opgedeeld in linten en verspreide bebouwing volgens het stappenplan dat is beschreven in Box 2. De volledige procedure is van toepassing op alle gebieden buiten de bedrijventerreinen groter dan 3ha en buiten de militaire domeinen. Deze stappenplannen en hun resultaten werden besproken tijdens twee workshops die werden georganiseerd samen met expertenpanel binnen het Departement Omgeving. Deze workshops hebben geresulteerd in een bijschaving van de methode, waarbij de resultaten zo dicht mogelijk bij de bevindingen van de experts werden gebracht.

Voor een uitvoerige beschrijving van de gevolgde methode voor het afbakenen van de kernen, linten en verspreide bebouwing, verwijzen we de technische documentatie die hierover werd opgeleverd (Vermeiren et al., 2018). De resultaten worden gerapporteerd in het RURA 2018. Deze indeling wordt hier gebruikt als één van de kernbegrippen (Hoofdstuk 1, Ruimterapport Vlaanderen, https://www.omgevingvlaanderen.be/ruimterapport). Deze maat wordt bijgevolg niet meer besproken in 3.4 waar de (overige) resultaten van Onderdeel 1 worden behandeld.

Box 1 Stappenplan afbakening kernen

- **Stap 1: Berekening dichtheidskaarten op een resolutie van 10x10m²**
 - aantal gebouwen in straal van 100m
 - oppervlakte gebouwen in straal van 100m
 - aantal huishoudens in straal van 100m
- **Stap 2: Berekening van dichtheden uit stap 1 per perceel**
- **Stap 3: Instellen van drempelwaarden voor de 3 criteria per perceel**
- **Stap 4: Omzetten naar gebiedsdekende kaart**
- **Stap 5: Afbakening van kernen als cluster van aaneengesloten rastercellen op een resolutie van 10x10m²**
- **Stap 6: Instellen van drempelwaarde voor aantal huishoudens (HH) per kern: minimum 20 HH per kern**
- **Stap 7: Opvullen van gaten in de kern door ‘smoothing’ operatie**
- **Stap 8: Afbakening van de randen van de kern op perceelsniveau**
- **Stap 9: Toevoegen van aangrenzende bebouwde percelen aan de kern**
3.2.3. Aanvullende maten voor urban sprawl

In de wetenschappelijke literatuur wordt er uitdrukkelijk op gewezen dat een volledig beeld van urban sprawl enkel verkregen kan worden wanneer meerdere aspecten van urban sprawl geanalyseerd worden. Torrens (2008) gebruikt bijvoorbeeld een set van 42 indicatoren om 7 karakteristieken van urban sprawl te meten, te weten stedelijke omvang/groei, dichtheid, sociale factoren, diversiteit (gemengd gebruik) van het landgebruik, de mate van versnippering, decentralisatie en bereikbaarheid t.o.v. voorzieningen. Ook Ewing et al. (2002) benoemen dichtheid, gemengd landgebruik, decentralisatie en toegankelijkheid als de voornaamste karakteristieken van sprawl. De WUP-methode behandelt enkel een subset van deze karakteristieken (stedelijke omvang, dichtheid, versnippering). Om een volledig zicht te krijgen op het fenomeen urban sprawl in Vlaanderen, lijkt het dus aangewezen om naast de WUP ook nog enkele andere maten door te rekenen, en, na te gaan of morfologische aspecten van de ruimtelijke patronen van sprawl op de ene of andere manier kunnen worden gekwantificeerd. Deze morfologische aspecten zijn namelijk een belangrijk onderdeel van de definitie die EEA hanteerde in zijn rapport ‘Urban sprawl in Europe — The ignored challenge’ uit 2006. Daarin is er sprake van: ‘Development is patchy, scattered and strung out, with a tendency for discontinuity. It leap-frogs over areas, leaving agricultural enclaves. Sprawling cities are the opposite of compact cities — full of empty spaces that indicate the inefficiencies in development and highlight the consequences of uncontrolled growth’.

Om die ‘verspringing’ in het landschap te kwantificeren wordt in deze studie gewerkt met de ‘lacunarity index’ (Plotnick et al., 1993). Lacunarity is een term die wordt gebruikt in de meetkunde om fractalen te kunnen onderscheiden. De maat geeft een idee over de vorm die ‘gaten’ innemen. Het is met andere woorden een maat voor de heterogeniteit van het ruimtelijk (bebouwde) patroon. Een homogeen patroon leidt tot lage lacunarity-waarden. Een heterogene patroon tot hoge waarden.
De lacunarity wordt berekend voor het ruimtebeslag aan de hand van een ‘moving window’ op het niveau van rastercellen. Lacunarity wordt doorgerekend voor Vlaanderen op basis van rastercellen (i) van 1km² en (ii) van 1ha. Hierbij wordt er voor iedere rastercel van 1km² (1 ha) bekeken welk aandeel van de rastercellen op een 10x10m² resolutie 0, 1, 2, 3 of 4 buren heeft met ruimtebeslag. De lacunarity wordt vervolgens berekend op een schaal van 1km² (1 ha), aan de hand van de onderstaande formule:

\[L(r) = \frac{\sum Si^2 Q(Si, r)}{(\sum Si^2 Q(Si, r))^2} \]

Waarbij \(Si \) = het aantal buren met ruimtebeslag (\(Si = 0 \) of 1 of 2 of 3 of 4), \(Q(Si, r) \) = het aandeel 10x10m² rastercellen binnen de 1km² (1 ha) gridcel die \(Si \) buurcellen met ruimtebeslag hebben.

3.3. Data

In dit onderdeel beschrijven we welke datasets gebruikt zijn om de verschillende indicatoren ruimtelijk uit te werken. In Tabel 1 wordt een overzicht gegeven van het type input dat nodig is per indicator. In de paragrafen die hierop volgen wordt verder toegelicht waar nodig welke alternatieve kaartlagen hiervoor beschikbaar en gehanteerd werden.

<table>
<thead>
<tr>
<th>WUP</th>
<th>KERNEN, LINTEN, VERSPREIDE BEBOUWING</th>
<th>LACUNARITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bebouwing</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Activiteitsgraad (inwoners en tewerkstelling)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Afbakening van ruimtelijk schaalniveau</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 1: Overzicht nodige input per indicator
3.3.1. Bebouwingskaarten

Verschillende datalagen zijn beschikbaar om de bebouwing (in Vlaanderen) in kaart te brengen, die elk gezien hun kenmerken voor verschillende doeleinden geschikt kunnen zijn:

- **De High-resolution layer ‘Imperviousness’ uit de Copernicus databank op 20m (zie Figuur 13: linksboven)**

- **De verharde oppervlakte (AGIV, op 5m, toestand 2013) (zie Figuur 13: rechtsboven)**
 De kaartlaag met de verharde oppervlakken van AGIV is het meest recente bestand beschikbaar in Vlaanderen m.b.t. verharding, voornamelijk gemeten op basis van remote sensing. Het is bovendien beschikbaar op een resolutie van 5 meter. Het zou dus aanleiding moeten zijn tot betere en meer recente resultaten dan deze verkregen met de Copernicus data.

- **De gebouwendatalaag (bron: grootschalige referentiebestand (GRB) + VITO landgebruiksbestand op 10m, toestand 2013 (zie Figuur 13: linksboven))**
 De EEA-studie vermeldt op verschillende plekken in de tekst dat verkeersinfrastructuur niet in rekening wordt gebracht om het fenomeen sprawl te kwantificeren. Ze doen dit door de ‘soil sealing’ op basis van de remote sensing data om te zetten naar ‘bebouwde oppervlakte’ door het toepassen van een correctiefactor, die is gekalibreerd voor de toestand in Zwitserland. Voor Vlaanderen zijn er echter kaartlagen beschikbaar waarop de bebouwde oppervlakte eenduidig en correct kan worden afgeleid.
 De kaartlaag met de gebouwen en percelen van het Grootschalige Referentiebestand (GRB) kan hiervoor gebruikt worden. In het landgebruiksbestand van VITO worden deze gebouwen op resolutie van 10m gekarteerd als één van de indicatoren.

 In functie van de alternatieve doorrekeningen van WUP wordt de indicator gebouwen (landgebruiksbestand) gebruikt. Deze benadert het dichtste de werkelijke definitie van de bebouwde ruimte zoals bedoeld in de indicator DIS van de EEA-studie.

 In functie van de indicator ‘Kernbebouwing, lintbebouwing, verspreide bebouwing’ wordt gebruik gemaakt van de basis data uit het GRB. Zoals in de methodologie beschreven wordt in een eerste (reken) stap de dichtheid van aantal gebouwen én van gebouwoppervlakte berekend. Voor de dichtheid van het aantal gebouwen telt elk object in de gebouwen-datalaag als één gebouw. Voor de gebouwoppervlakte-dichtheid telt de ganse footprint van elk gebouw in deze dataalaag. Ook deze analyse gebeurt op 10m-resolutie.

- **Het Ruimtebeslag op 10m (zie Figuur 13: rechtsonder)**
 De berekening op basis van ruimtebeslag is in zoverre interessant dat niet alleen de gebouwen zelf maar ook de infrastructuur en de niet-verharde terreinen rondom de gebouwen deel uitmaken van sprawl, zeker in de ruimere definities van de term.

 Het ruimtebeslag is eveneens een indicator uit het landgebruiksbestand (VITO, 2013) die beschikbaar is op 10m resolutie en op 1ha. Zowel voor de berekening van WUP als voor de berekening van de lacunarity-indicator wordt het ruimtebeslag op 10m resolutie ingezet.
- laag ‘Imperviousness’ uit de Copernicus databank op 20m
- verharde oppervlakte kaart van AIV op 5m resolutie (geaggregeerd tot 20m)
- gebouwenkaart uit het landgebruiksbestand VITO op 10m resolutie (in rood)
- ruimtebeslag uit het landgebruiksbestand VITO op 10m resolutie

Figuur 13: Vier alternatieve inputdata voor de bebouwingskaart

- **Landgebruikskaarten 1976, 1988 en 2000 (1ha resolutie, Figuur 14)**

De Copernicus data laten toe om het ‘proces’ urban sprawl te becijferen voor de periode 2006-2012. Dit is echter slechts een relatief korte tijdsperiode in vergelijking met de ruimtelijke ontwikkelingen die tot het huidige patroon van urban sprawl geleid hebben in Vlaanderen. Uit een historische analyse van urban sprawl in Vlaanderen kan een beter inzicht verworven worden in de evolutie van het fenomeen in Vlaanderen en kunnen toekomstige acties grondiger en wetenschappelijk beter onderbouwd worden. Op basis van het doctoraatsonderzoek van Lien Poelmans (Geografie, KULeuven), beschikt VITO over landgebruikskaarten voor Vlaanderen van 1976, 1988 en 2000 op 1ha resolutie. Deze kaarten zijn aangemaakt op basis van een consistente, zelfde methodologie gebruikmakend van Landsat remote sensing beelden op een resolutie van 30 meter en onderscheiden: bebouwde oppervlakte, akkerland, grasland, bos en water. De categorie ‘bebouwde oppervlakte’ is gebruikt als proxy om de WUP-indicator te berekenen.
In opdracht van Ruimte Vlaanderen ontwikkelt VITO inwoners- en tewerkstellingskaarten op een 1ha resolutie. Deze kaarten zijn beschikbaar voor het basisjaar 2013 (Poelmans et al., 2016). Deze werd gebruikt zowel om de activiteitsgraad in WUP als de dichtheid van aantal huishoudens in de indicator ‘Kernbebouwing, lintbebouwing en verspreide bebouwing’ te karteren.

3.4. Resultaten

3.4.1. Weighted Urban Proliferation als maat van sprawl

In dit onderdeel herhalen we eerst een aantal figuren en cijfers uit de EEA studie. Vervolgens kijken we naar de resultaten wanneer we gebruik maken van Vlaanderen-specifieke input, zoals beschreven in de methodologie. Ten slotte wordt gerapporteerd over de evolutie van urban sprawl in Vlaanderen in de periode 1976-2000.

De resultaten van de Europese Urban sprawl studie

Figuur 15 toont het resultaat dat gerapporteerd werd in de EEA studie voor de Benelux wat betreft de WUP op een 1km² resolutie, de grafieken in Figuur 16 geven het overzicht per land dat is meegenomen in de analyse.

Figuur 15: WUP 2009 voor Benelux, resultaat uit EEA urban sprawl rapport (2016)
Deze definitie en indicatoren leggen sterk de nadruk op (relatieve) oppervlakte aan bebouwing, bevolkings- en tewerkstellingsaantallen, en, bevolkings- en tewerkstellingsdichtheid. De resultaten bevestigen dit ook: dichtbevolkte gebieden zoals België, Nederland en het Ruhrgebied scoren hoog in de resultaten. Dun bevolkte gebieden in Scandinavië scoren laag. Dit legt wellicht...
Calibratie van de WUP-methode en specifiek diens wegingsfactoren \(w_1 \) en \(w_2 \) (zie Figuur 12) gebeurde in Zwitserse context als representatief voor Europa. Bijvoorbeeld de wegingsfactor \(w_2 \) voor LUP gaat omlaag vanaf een dichtheid van < 200m\(^2\) per inwoner of job. Hierdoor gaat LUP omlaag in stedelijke kernen met hoge dichtheden. In Vlaanderen zijn er echter slechts enkele locaties waar zulke hoge dichtheden worden bereikt en komen lage WUP-waarden dus amper voor in stedelijke kernen. DIS wordt gewogen met wegingsfactor \(w_1 \). Deze factor zorgt er voor dat DIS-waarden die groter zijn dan 45 resulteren in een hogere WUP. Als gevolg hiervan worden hoge WUP-waarden bereikt in stedelijke kernen zoals bv. Turnhout. Deze steden zijn, naar Vlaamse maatstaven, echter relatief dichtbebouwd en worden niet beschouwd als urban sprawl. De wegingsfactoren lijken dus niet helemaal toepasbaar op de Vlaamse context. Aanpassen van de wegingsfactoren is echter een intensieve taak die afgeraden wordt door de auteurs omdat deze aanpassingen gedragen dienen te worden door externe experten en dat dit bovendien zou leiden tot de ontwikkeling van een nieuwe maat die niet langer vergelijkbaar is met de originele WUP.

Door het gebruik van de ‘Imperviousness’ uit de Copernicus databank worden tuinen niet in rekening gebracht in de berekening van de WUP. Hierdoor worden in de typische Vlaamse verkavelingen zeer lage PBA-waarden en dus WUP-waarden berekend. Dit kan worden opgelost door met ruimtebeslag te werken, waardoor tuinen wel in rekening worden gebracht voor het bepalen van de hoeveelheid urban sprawl.

Aggregatie tot op groter schaalniveau gebeurt best via clusteren van cellen met WUP-waarden binnen dezelfde range. Zo kan een nieuwe ‘administratieve’ kaart ontstaan die toelaat om WUP per regio te berekenen.

De auteurs zeggen toe om betrokken te blijven bij de studie. Met name Jochen Jaeger is in de mogelijkheid om een bezoek te brengen aan België en bij te dragen aan een toekomstige publicatie rond deze toepassing van WUP in Vlaanderen.

Huidige patronen van urban sprawl in Vlaanderen

De WUP-kaart werd geproduceerd voor elk van de vier databronnen, vermeld in Figuur 13, op een 1ha resolutie. Figuur 17 geeft de resultaten, waarbij de absolute waarde voor WUP voor de 4 alternatieven worden getoond met eenzelfde kleurenschaal waardoor de absolute verschillen visueel duidelijk worden. De grafiek in Figuur 18 toont de cumulatieve relatieve verdeling van de WUP scores voor alle cellen in Vlaanderen, voor de vier alternatieven. Opvallend zijn de vele lage waarden in het resultaat gebaseerd op de gebouwenkaart. WUP correleert sterk met het

Figuur 17: WUP berekend op een 1ha resolutie op basis van Copernicus ‘Imperviousness’ (linksboven), de verhardingskaart van AIV (linksonder), de gebouwenlaag uit het landgebruiksbestand (rechtsboven) en het ruimtebeslag (rechtsbeneden)
Figuur 18: Cumulatieve relatieve verdeling van WUP waarden voor 1ha-cellen voor de vier alternatieven

De kaarten in Figuur 19 zoomen in op de WUP waarden in de regio Turnhout (cirkel 1), Oud-Turnhout (cirkel 2) en de (villa)wijk de Lint (Oud-Turnhout, cirkel 3). Figuur 20 toont aan de hand van enkele foto’s aan hoe de bebouwingsmorfoogie zich voordoet.

Het centrum van Turnhout vertoont in alle varianten een verlaagde WUP waarde dankzij diens bevolkingsdichtheid en compactheid. Voor bijna alle varianten vertoont het centrum van Oud-Turnhout een verhoging van de WUP-waarde, wegens verlaagde dichtheden en verlaagde compactheid. De wijk de Lint is een villawijk met veel groen, zijnde grote tuinen binnen de residentiële percelen. Opvallend is dat deze wijk enkel in de variant op basis van ruimtebeslag aangewezen wordt als wijk met een verhoogde sprawl score (WUP) ten opzichte van de vorige zones. We zouden kunnen spreken van een ‘verdoken vorm’ van urban sprawl, wegens de afhankelijkheid van de type input die nodig is om deze te detecteren. De resultaten die horen bij het alternatief dat gebaseerd is op het ruimtebeslag strookt het best met de perceptie van ‘urban sprawl’ binnen Vlaanderen. In wat volgt wordt dan ook verder gewerkt met de resultaten op basis van het ruimtebeslag.
Figuur 19: WUP-resultaatkaarten voor de vier alternatieve inputs, zoom: regio Turnhout - Oud-Turnhout

Figuur 20: Regio Turnhout verschillende woonomgevingen
Uit een analyse van de gemiddelde en cumulatieve WUP-waarden per landgebruik (op basis van het landgebruiksbestand 2016, VITO) zien we dat de huizen en tuinen verantwoordelijk zijn voor het grootste aandeel ‘urban sprawl’ in de totale Vlaamse ruimte. De gemiddelde WUP-waarde is voor gebieden met huizen en tuinen hoog, namelijk 47,7. De hoogste gemiddelde WUP-waarde wordt gevonden bij de landgebruiken luchthavens, groeves, industrie, recreatie en landbouwgebouwen en infrastructuur. Deze nemen een veel kleiner aandeel van de Vlaamse oppervlakte in waarde en cumulatief aandeel van de totale WUP in Vlaanderen veel lager ligt. Hun hoge WUP-scores geeft aan dat urban sprawl niet enkel de woonfunctie treft, maar dat er ook sprake is van zogenaamde ‘industrial sprawl’ en ‘agricultural sprawl’ in Vlaanderen. Hoewel deze wel minder oppervlakte in beslag neemt dan de sprawl veroorzaakt door de woonfunctie.

<table>
<thead>
<tr>
<th>Landgebruik</th>
<th>aandeel oppervlakte</th>
<th>gemiddelde WUP</th>
<th>aandeel WUP tov totaal voor Vlaanderen</th>
</tr>
</thead>
<tbody>
<tr>
<td>luchthavens</td>
<td>0%</td>
<td>62,0</td>
<td>0%</td>
</tr>
<tr>
<td>groeves</td>
<td>0%</td>
<td>55,4</td>
<td>0%</td>
</tr>
<tr>
<td>industrie</td>
<td>3%</td>
<td>55,1</td>
<td>8%</td>
</tr>
<tr>
<td>recreatie</td>
<td>2%</td>
<td>52,7</td>
<td>6%</td>
</tr>
<tr>
<td>landbouwgebouwen en infrastructuur</td>
<td>1%</td>
<td>48,6</td>
<td>2%</td>
</tr>
<tr>
<td>commerciële doeleinden</td>
<td>0%</td>
<td>48,2</td>
<td>1%</td>
</tr>
<tr>
<td>huizen en tuinen</td>
<td>13%</td>
<td>47,7</td>
<td>32%</td>
</tr>
<tr>
<td>diensten</td>
<td>1%</td>
<td>45,4</td>
<td>3%</td>
</tr>
<tr>
<td>overige bebouwde terreinen</td>
<td>3%</td>
<td>45,3</td>
<td>8%</td>
</tr>
<tr>
<td>overige onbebouwde terreinen</td>
<td>4%</td>
<td>44,5</td>
<td>8%</td>
</tr>
<tr>
<td>transportinfrastructuur</td>
<td>6%</td>
<td>38,4</td>
<td>12%</td>
</tr>
<tr>
<td>grasland</td>
<td>21%</td>
<td>7,7</td>
<td>8%</td>
</tr>
<tr>
<td>water</td>
<td>2%</td>
<td>7,4</td>
<td>1%</td>
</tr>
<tr>
<td>struikgewas</td>
<td>2%</td>
<td>7,0</td>
<td>1%</td>
</tr>
<tr>
<td>moeras</td>
<td>0%</td>
<td>5,9</td>
<td>0%</td>
</tr>
<tr>
<td>bos</td>
<td>10%</td>
<td>5,9</td>
<td>3%</td>
</tr>
<tr>
<td>braakliggend en duinen</td>
<td>0%</td>
<td>4,8</td>
<td>0%</td>
</tr>
<tr>
<td>akker</td>
<td>30%</td>
<td>4,4</td>
<td>7%</td>
</tr>
</tbody>
</table>

Tabel 2: analyse van WUP per landgebruik (2016, VITO)

Wanneer de kaarten voor gans Vlaanderen bekeken worden, vertonen deze een sterk versnippert beeld wegens de hoge resolutie (Figuur 17). Dit kan worden verholpen door de kaarten te aggereren naar een hoger niveau, zoals gemeenten of statistische sectoren. Figuur 21 toont het resultaat hiervan op het niveau van de gemeenten. In deze kaart zijn de waarden per gemeente niet uitgezet in absolute waarden, maar ten opzichte van de gemiddelde WUP waarde die in de Vlaamse gemeenten gevonden kan worden (gemiddelde WUP voor de gemeenten = 20). Gemeenten in blauw gekleurd hebben een gemiddelde WUP die hoger is dan het gemiddelde, gemeenten in bruin gekleurd hebben een gemiddelde WUP die lager is dan het gemiddelde. Hoge WUP waarden worden over het algemeen gevonden rondom Brussel, Antwerpen en Gent. Verder vertoont ook de regio rondom Kortrijk en de ruime regio rondom Keerbergen bovengemiddelde WUP-waarden. De laagste WUP worden gevonden in de westhoek en het zuiden van de provincie Limburg.

In de stedelijke gebieden scoren de dichte stadskernen weliswaar laag op de WUP-indicator, maar zorgen de buitenwijken en de bedrijventerreinen (havengebieden) voor een hoge score op het
niveau van de gemeente. Een belangrijk nadeel van het werken op een geaggregeerd niveau is dus dat eventuele verschillen die binnen een gemeente voorkomen worden weggevaagd. Figuur 22 toont daarom het resultaat op niveau van de statistische sectoren: hoe donkerder de kleur, hoe hoger de gemiddelde WUP-waarde en dus urban sprawl in de statistische sector. Figuur 22 toont duidelijk het effect van de dichte stadskern met een lage WUP-waarde en de buitenwijken met een hoge WUP. Dit effect is duidelijk zichtbaar in Antwerpen en Gent, maar ook in kleinere steden als Leuven, Hasselt, Kortrijk en Brugge.

Figuur 21: WUP geaggregeerd op het niveau van de gemeenten

Figuur 22: WUP geaggregeerd op het niveau van de statistische sectoren

Vanaf wanneer, vanaf welke WUP-waarde, spreken we nu over urban sprawl? En waar in Vlaanderen hebben we dan urban sprawl en waar niet? Een vraag waar ook het EEA-rapport niet meteen de ultieme oplossing biedt. In het rapport worden de resultaten besproken in vergelijking met zones waar de WUP-waarden hoger of lager zijn. Zo wordt bijvoorbeeld aangehaald dat Brussel en Amsterdam kernen met lage sprawl zijn. Maar een grenswaarde voor hoog versus laag wordt niet expliciet aangehaald. De resultaten van Figuur 18 en Figuur 19 geven ook aan dat een absolute grens ook afhankelijk is van de input die gebruikt wordt. In de kleurenschaal die gebruikt wordt in het EEA-rapport (Figuur 15) is er een graduele overgang van licht roze naar donker rode tinten waar visueel op de kaart de indruk gewekt wordt dat ergens in het oranje segment (WUP-waarde 5-8 en 8-13) er een omschakeling plaats vindt. Als we een harde grenswaarde voor WUP vastleggen op de waarde 10, en dit toepassen voor Vlaanderen krijgen we het beeld uit Figuur 24, namelijk maar liefst 44% van de oppervlakte van Vlaanderen valt in het zwarte, sprawl-gebied en treft daarmee 95% van de Vlaamse bevolking (Figuur 25). Enkel de centra van onze grootste steden en de grotere open ruimte en natuurgebieden blijven gevrijwaard van het fenomeen.
Voor de gemiddelde waarden per statistische sector zijn het de sprawl-gebieden die het kaartbeeld domineren. Zeventig procent van de statistische sectoren scoren gemiddeld meer dan 10 op WUP. Ze nemen in totaal 64% van de Vlaamse oppervlakte in. Dat geeft aan dat de niet-sprawl statistische sectoren gemiddeld groter zijn dan de sprawl-sectoren. Een concentratie van niet-sprawl sectoren vinden we in de Westhoek, delen van de Kempen (noorden van Antwerpse Kempen en centraal in Limburgse Kempen), zuiden van Haspengouw en Hageland, Meetjesland en delen van de Vlaamse Ardennen – gebieden die gekend staan voor hun open ruimte en natuur. In het Hageland, Haspengouw en de Vlaamse Ardennen valt het versnipperd beeld op. Voornamelijk vanwege de verstredelijkxing van de dorpen die plaats vindt.

Van de Vlaamse gemeenten zijn er amper 24 op 308 die onder de drempelwaarde vallen, of 8% van gemeenten die gemiddeld niet gedomineerd zijn door sprawl. Samen nemen ze amper 9% van de Vlaamse oppervlakte in. Deze niet-sprawl gemeenten liggen voornamelijk in het uiterste
westen van Vlaanderen en langsheen de Vlaams-Waalse grens. Het valt op dat in de Kempen de lage sprawl-waarden in de natuur en open ruimte gebieden het gemeentelijke gemiddelde niet voldoende omlaag krijgen om onder de drempelwaarde te vallen.

De ruimtebeslag kaart die gebruikt werd bestrijkt enkel het Vlaamse grondgebied en gaat bijgevolg niet over de grenzen waardoor de dispersie-maat enkel berekend werd op basis van de onderlinge afstanden tussen ruimtebeslag cellen binnen Vlaanderen. Dit kan een grenseffect veroorzaken op de WUP-maat, maar enkel als de afstanden tussen ruimtebeslag net over de grens (binnen 2km) opvallend groter of kleiner zijn dan binnen de rest van de gemeente. Aangezien het niet zo is dat systematisch alle gemeenten langs de grens lager scoren, wordt er van uit gegaan dat dit effect niet significant is.

Figuur 26: Zwart-wit kaart voor sprawl per statistische sector op basis van de WUP-maat met grenswaarde 10
Evolutie van urban sprawl in de periode 1976-2000

De verschillen die optreden in WUP in Vlaanderen kunnen worden gekwantificeerd in absolute waarden en in relatieve waarden (Figuur 29).

Een daling van de WUP kon in de periode 1976-2000 enkel worden vastgesteld in het centrum van Brussel, dat in deze periode een sterke verdichting heeft ondergaan (hogere inwonersdichtheden).

Andere gebieden hebben eerder een historische (pre-1976) urban sprawl, die nadien relatief weinig is geëvolueerd: de Limburgse mijnregio (Houthalen-Helchteren, Heusden-Zolder, Beringen)

Figuur 29: Evolutie van WUP in de periode 1976 – 2000 in absolute termen (boven) en relatieve termen (onder)

Figuur 30: Evolutie van de WUP op niveau van de gemeenten in relatieve termen (afwijking ten opzichte van de standaardafwijking)
3.4.2. Een sprawltypologie voor Vlaanderen

De WUP-maat blijft complex om te gebruiken, zeker in functie van communicatie naar een breed publiek, die het onderwerp is van Onderdeel 4 van de studie. De reden hiervoor is dat de maat ambigu is: lage WUP-waarden komen zowel voor in open ruimte gebieden als in dichte stadscentra. Figuur 31 toont enkele luchtbeelden met gelijkwaardige, extreme WUP-waarden in Vlaanderen. Deze foto’s tonen aan dat gelijkwaardige WUP-waarden kunnen voorkomen in zeer uiteenlopende ruimtelijke patronen en bebouwingsmorfolgieën. Zowel zeer lage WUP-waarden als zeer hoge WUP-waarden zijn te vinden in verschillende bebouwingsdichtheden, bevolkingsdichtheden en tewerkstellingsdichtheden.

Om die reden is er werk gemaakt van een meer intuitieve urban sprawl typologie die wel is gebaseerd op WUP – om de link met de Europese maat te behouden, maar die kan ingezet worden voor het maatschappelijke-publieke debat over urban sprawl.

![Figuur 31: Luchtfoto’s voor extreme WUP waarden in Vlaanderen](image)

Deze typologie is opgesteld door de gefilterde WUP-kaart (Figuur 23) in te delen in 4 categorieën: zeer laag, laag, hoog, zeer hoog. Er bestaan verschillende manieren om continue waarden in categorieën in te delen. In deze studie wordt gebruik gemaakt van een classificatie aan de hand van ‘natural breaks’, volgens het algoritme van Jenks (beschikbaar in ArcGis). Het doel van een ‘natural breaks’ classificatie is enerzijds om een zo klein mogelijk verschil tussen de waarden binnen één categorie te krijgen en anderzijds om een zo groot mogelijk verschil tussen de verschillende categorieën te krijgen (Jenks, 1967, McMaster 1997). Het grote voordeel van deze classificatiemethode bestaat er uit dat het de mogelijkheid biedt om groepen of patronen te ontdekken die in de data verborgen zitten. Het Jenks-algoritme doet dit door de variantie binnen iedere categorie te minimaliseren (afwijking ten opzichte van het gemiddelde), en de variantie tussen de categorieën te maximaliseren (afwijking ten opzichte van de gemiddelden van alle andere categorieën). Door gebruik te maken van een classificatiemethode aan de hand van ‘natural breaks’ worden dus met name de verschillen die er bestaan tussen de verschillende
locaties belicht. De ‘natural breaks’ waarden werden vervolgens afgerond tot op het tiental. Deze afronding heeft geleid tot de classes voor WUP van <10, 10-20, 20-40 en >40. Deze gecategoriseerde WUP-kaart werd vervolgens gekruist met een ‘activiteitenkaart’, eveneens opgedeeld in 4 categorieën. De activiteitenkaart is een kaart op 1 ha resolutie waarin per rastercel de som van het aantal inwoners en het aantal jobs is gemaakt. Ongeveer 38% van de bewoonde locaties (met >0 personen/ha) heeft een waarde kleiner dan 5 personen / ha. Slechts 8% heeft een waarde hoger dan 50 personen / ha. Deze cijfers hebben geleid tot de grenswaarden 5, 15 en 50 personen per ha om de activiteitskaart in de klassen heel laag, laag, gemiddeld en hoog in te delen. Beide kaarten werden vervolgens met elkaar gekruist tot een matrix van 16 klassen. Uit deze matrix van potentieel 16 klassen komen 13 voor in Vlaanderen. Drie klassen (in grijs) vormen een soort van ‘artefact’ en komen zeer zelden voor. Figuur 32 toont een luchtfoto die de typische morfologie van ieder van de 13 klassen weergeeft.

Figuur 32: Urban sprawl matrix met 13 klassen

2 Volgens de definitie van de WUP kan een combinatie van (zeer) lage WUP waarden met een gemiddelde activiteitsgraad niet voorkomen. Lagere activiteitsgraden dan < 50 personen/ha leiden namelijk steeds tot een hoge LUP-waarde, en vervolgens in een hoge WUP. Dit soort locaties zijn artefacten van de filteroperatie die gebruikt wordt om de typologiekaart op te stellen. Deze cellen krijgen de meest nabije klasse toegewezen.
Deze 13 klassen kunnen worden gekarakteriseerd aan de hand van een aantal ruimtelijke indicatoren:

- Aantal gebouwen per ha
- Grootte van de tuin (m)
- Percentage verharding per ha
- Meters lint per ha ruimtebeslag
- Percentage open bebouwing (ter vertegenwoordiging van gebouwtype)
- Meter lokale weg per ha
- Percentage ruimtebeslag
- Aantal personen per ha (activiteiten)

Tabel 3 geeft een overzicht van de bron en (eventuele) bewerking van deze indicatoren. In de grafieken van Figuur 33 wordt een overzicht gegeven van de gemiddelde waarden van elke klasse op deze indicatoren.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Bron</th>
<th>Bewerking</th>
</tr>
</thead>
<tbody>
<tr>
<td>aantal gebouwen per ha</td>
<td>datalaag gebouwen GRB</td>
<td>Selectie hoofdgebouwen, omzetting naar raster met resolutie 1ha</td>
</tr>
<tr>
<td>Grootte van de tuin</td>
<td>datalaag gebouwen en percelen GRB</td>
<td>Perceelsgrootte min gebouwoppervlakte, omzetting naar raster met resolutie 1ha</td>
</tr>
<tr>
<td>Percentage verharding per ha</td>
<td>Bodemafdekkingskaart BAK</td>
<td>Aggregatie van 5m resolutie naar 1ha resolutie</td>
</tr>
<tr>
<td>Meters lint per ha ruimtebeslag</td>
<td>Lijnenkaart met linten, (resultaat van deze studie, zie verder), ruimtebeslag per ha</td>
<td>Omzetting lijnen (linten) naar raster met resolutie 1ha, deling door ruimtebeslag per ha</td>
</tr>
<tr>
<td>Percentage open bebouwing</td>
<td>datalaag gebouwen GRB, inwonersdataset</td>
<td>Categorisering hoofdgebouwen op basis van morfologie en inwoners: geen buren = open, 1 buur = halfopen, >=2 buren = rijwoning, >2 inwonerspunten = appartement</td>
</tr>
<tr>
<td>Meters lokale weg per ha</td>
<td>Wegenregister</td>
<td>Selectie van wegen op basis van morfologie (zie bijlage)</td>
</tr>
<tr>
<td>Percentage ruimtebeslag</td>
<td>Ruimtebeslag</td>
<td></td>
</tr>
<tr>
<td>Aantal personen per ha</td>
<td>Activiteiten, resultaat van deze studie</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 3: Overzicht indicatoren met bron en bewerking
aantal gebouwen per ha

percentage verharding

meter lint per ha
Aan de hand van deze ruimtelijke karakteristieken kunnen de 13 klassen ingedeeld worden in groepen. Via een cluster-analyse werden de 13 klassen ingedeeld tot min of meer homogene groepen. De klassen binnen eenzelfde cluster lijken m.a.w. sterk op elkaar wat betreft de opgegeven variabelen. Figuur 34 geeft een overzicht van de gemiddelde waarden van elke cluster op deze indicatoren:

- **Klasse 0** - zeer lage activiteitsgraad en lage mate van sprawl – kent een zeer lage score voor de indicatoren die de infrastructuur beschrijven (bebouwing, verharding, meter weg ...) De (weinige) woningen die er staan zijn voornamelijk vrijstaande woningen met grote tuinen.

- **Klasse 1 en 2** – zeer lage activiteitsgraad, lage tot gemiddelde mate van sprawl – kennen ook een lage score voor de infrastructuur-beschrijvende indicatoren. Dit zijn voornamelijk vrijstaande woningen met tuinen van ca 1000m².

- **Klasse 11, 12 en 13** - lage activiteitsgraad, brede range van sprawl – kennen een eerder gemiddelde waarde voor de infrastructuur-beschrijvende indicatoren. Opvallend is dat deze klassen gemiddeld de hoogste concentratie van meters lint per ha ruimtebeslag
kennen (44,6m/ha). Ook het aandeel halfopen bebouwing (20%) is hoog in vergelijking met de andere klassen.

- Klasse 30, 31, 32 en 33 – hoge activiteitsgraad, brede range van sprawl – is de dichtst bebouwde categorie die het hoogst scoort voor aantal gebouwen per ha, % verharding, activiteitsgraad, meter weg per ha enz. De gebouwen bestaan voor 90% uit rijwoningen en appartementen. De tuinen zijn gemiddeld het kleinst van alle klassen: ca 90m²

- Klasse 3 – zeer lage activiteitsgraad, hoge sprawl – is een beetje een aparte klasse die enerzijds grote gelijkenissen vertoont met klasse 0 en 1 en 2 op vlak van gebouwen en gebouwkenmerken (type gebouwen, grootte tuinen), maar anderzijds wel een relatief hoge mate van verharding, ruimtebeslag en hoeveelheid infrastructuur per ha kent.

<table>
<thead>
<tr>
<th>klasse</th>
<th>Aantal gebouwen per ha</th>
<th>aandeel appartementen</th>
<th>aandeel vrijstaand</th>
<th>aandeel halopen</th>
<th>aandeel rijwoning</th>
<th>lmw/ha</th>
<th>typen gebouwen</th>
<th>activiteiten per ha</th>
<th>perceem.-grote tuin m²</th>
<th>% verharding</th>
<th>meter/lm</th>
<th>% ruimte- beslag</th>
<th>meter weg per ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1</td>
<td>0,0</td>
<td>0,8</td>
<td>0,1</td>
<td>0,0</td>
<td>2,6</td>
<td>2,3</td>
<td>1,3</td>
<td>7,8</td>
<td>3,3</td>
<td>1,3</td>
<td>4,3</td>
<td>43,2</td>
</tr>
<tr>
<td>2, 12</td>
<td>0,9</td>
<td>0,5</td>
<td>0,6</td>
<td>0,5</td>
<td>0,2</td>
<td>4,5</td>
<td>3,5</td>
<td>1,3</td>
<td>7,5</td>
<td>3,3</td>
<td>1,3</td>
<td>4,3</td>
<td>43,2</td>
</tr>
<tr>
<td>13</td>
<td>0,1</td>
<td>0,5</td>
<td>0,2</td>
<td>0,2</td>
<td>0,5</td>
<td>4,5</td>
<td>3,5</td>
<td>1,3</td>
<td>7,5</td>
<td>3,3</td>
<td>1,3</td>
<td>4,3</td>
<td>43,2</td>
</tr>
<tr>
<td>22, 23</td>
<td>0,9</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>4,5</td>
<td>3,5</td>
<td>1,3</td>
<td>7,5</td>
<td>3,3</td>
<td>1,3</td>
<td>4,3</td>
<td>43,2</td>
</tr>
<tr>
<td>32, 31, 33</td>
<td>0,9</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>4,5</td>
<td>3,5</td>
<td>1,3</td>
<td>7,5</td>
<td>3,3</td>
<td>1,3</td>
<td>4,3</td>
<td>43,2</td>
</tr>
<tr>
<td>3</td>
<td>0,4</td>
<td>0,0</td>
<td>0,8</td>
<td>0,1</td>
<td>0,1</td>
<td>4,5</td>
<td>3,5</td>
<td>1,3</td>
<td>7,5</td>
<td>3,3</td>
<td>1,3</td>
<td>4,3</td>
<td>43,2</td>
</tr>
</tbody>
</table>

Figuur 34: Overzicht gemiddelde indicatorwaarde voor clusters van klassen

Figuur 35 geeft een overzicht van de belangrijkste kencijfers per type.

Figuur 35: Overzicht kencijfers per type
Deze clusters worden in de matrix aangeduid met een omranding in kleur (Figuur 36). De vier clusters in blauwtinten zijn de clusters die de meeste bebouwde ruimte en oppervlakte innemen. Deze zijn bijgevolg belangrijk om in rekening te nemen wanneer we de kosten van sprawl gaan monetariseren. Rechts in Figuur 36 worden deze benoemd en geïllustreerd in functie van de dominante bebouwingsmorfologie die binnen de cluster geobserveerd wordt. Hieronder beschrijven we elke cluster.

De wit omrande tegel bovenaan links heeft een lage WUP-waarde en dito activiteitendichtheid. Dit is ruimte die gedomineerd wordt door groen (voornamelijk natuur en landbouw) en waar in beperkte mate bebouwing terug te vinden is. Slechts 5,9% van het ruimtebeslag en 1,2% van alle gebouwen bevinden zich in dit type. Deze niet-bebouwde ruimte wordt niet als urban sprawl gepercipieerd. Deze wordt dan ook niet gemonetariseerd in Onderdeel 2. De gebieden worden in wit weergegeven in de kaart van Figuur 37 en is de grootste categorie in oppervlakte in Vlaanderen: 37%. De lichtgrijze gebieden hebben een zeer lage activiteitendichtheid en een hoge WUP-waarde. Dit zijn bijvoorbeeld havens, recreatiegebieden of kampeerterreinen. Door de hoge WUP-waarde vormen deze gebieden een duidelijk onderdeel van de urban sprawl in Vlaanderen. Deze categorie neemt echter al 1,2% van de Vlaamse ruimte in. De categorie is een 'rest'-categorie, aangeduid in grijs op Figuur 37, en wordt niet meegenomen als apart type in de monetarisering.

De cluster bestaande uit klasse 1 en 2 worden omrand in de meest lichte tint van blauw. Deze gebieden hebben in Vlaanderen een eerder gemiddelde WUP-waarde, gecombineerd met een zeer lage activiteitendichtheid. De indicatorwaarde en de beelden in Figuur 36 maken duidelijk dat deze gedomineerd worden door verspreide bebouwing. Deze komen verspreid over Vlaanderen voor, maar bestrijken in totaal wel 32% van de oppervlakte. Op Europees niveau
worden gebieden met verspreide bebouwing beschouwd als karakteristieke getuigen van het Europees historisch verspreid nederzettingspatroon. Wegens hun lage aandeel bebouwde oppervlakte per oppervlakte-eenheid worden ze per definitie niet beschouwd als urban sprawl. Een groei aan bebouwing in deze gebieden zorgt volgens de berekening van WUP wel in een verhoging van sprawl en wordt vervolgens in Europa bestempeld als rural sprawl. In Vlaanderen is veel van deze verspreide bebouwing al lang niet meer alleen toe te wijzen aan de historische boerderijen en landbouwactiviteiten. We zien dat de mate van sprawl varieert van laag tot gemiddeld. In totaal huisvest deze categorie 8% van de Vlaamse bevolking. Dit type wordt in Vlaanderen wel beschouwd als een type van urban sprawl.

De cluster bestaande uit klasse 11, 12 en 13 worden omrand met een licht blauwe tint. Deze blauwtint verwijst naar de gebieden in Vlaanderen die gekenmerkt worden door een gemiddelde tot zeer hoge WUP-waarde, en dit vooral door het lage landgebruik per persoon en de lage activiteitsdichtheid. In deze gebieden vinden we een dominantie van lintbebouwing en verkavelingen terug. Deze categorie beslaat 17% van de Vlaamse oppervlakte en huisvest 23% van de bevolking. Ook hier geldt dat dit type beschouwd wordt als belangrijk onderdeel van de urban sprawl in Vlaanderen ongeacht het feit dat de WUP waarde kan variëren.

De cluster bestaande uit klasse 22 en 23 worden omrand met een donkerder blauwe tint. Deze kent een gemiddelde activiteitsdichtheid en een gemiddelde tot hoge WUP-waarde. De beelden uit Figuur 36 tonen dat hier ook veel verkavelingen te vinden zijn, maar aan een zodanige dichtheid die typisch is voor dorpskernen en stadsranden – wordt duidelijk in Figuur 37. Dit type neemt 10% van de oppervlakte in beslag maar huisvest het grootst aantal inwoners, wel 43% van heel Vlaanderen.

De donkerblauw omrande tegels rond klassen 30-33 hebben een voor Vlaanderen hoge activiteitsgraad. Ze hebben zeer dicht bebouwde stedelijke zones die een lage WUP-waarde hebben (onderaan links) en dus ook niet beschouwd worden als urban sprawl. Anderzijds omvatten deze gebieden ook zones die eerder gesitueerd zijn aan de randen van de stad. Deze omgevingen hebben hoge WUP-waarden (onderaan rechts), een iets hoger ruimtebeslag per activiteit en een lager percentage bebouwing. Beide categorieën worden in de kaart van Figuur 37 felblauw ingekleurd en situeren zich typisch in de Vlaamse stadskernen. Dit type neemt in totaal amper 2% van de oppervlakte in maar huisvest wel maar liefst 24% van de inwoners dankzij die hoge dichtheid. Ondanks de range aan sprawl-waarde die hierbinnen geobserveerd kan worden, wordt dit type in Vlaanderen niet beschouwd als urban sprawl.

Urban sprawl kan met andere woorden en volgens deze typologie in verschillende vormen voorkomen, zoals dorpskernen en stadsranden, grote en ruime verkavelingen, lintbebouwing en andere specifieke verspreide bebouwingstypologieën zoals havens en kampeerterreinen.
Figuur 37: Urban sprawl typologie in kaart

- niet/dun bebouwde ruimte
- verspreide bebouwing
- verkavelingen en linten
- dorpskernen en stadsranden
- stadskernen
- overig
Figuur 38: Urban sprawl typologie oppervlakte verdeling (links) en inwonersverdeling (rechts) voor Vlaanderen
Deze typologie wordt gebruikt voor de monetarisering van de urban sprawl in Onderdeel 2. Aan ieder type zullen in Onderdeel 2 kosten gekoppeld worden.

3.4.3. Lacunarity index

De Lacunarity index werd berekend voor twee schaalniveaus: 1km² en 1ha. Het resultaat voor beide schaalniveaus is te zien in Figuur 40 en Figuur 41. Een lage lacunarity komt voor in homogene gebieden met veel ruimtebeslag (0% indien volledige rastercel wordt ingenomen door ruimtebeslag). De hoogste lacunarity (> 10%) wordt gevonden in gebieden waarin ruimtebeslag en niet-ruimtebeslag door elkaar voorkomen. Locaties scoren dus hoog wanneer er een verspringing van het patroon is: van ruimtebeslag naar niet-ruimtebeslag. Deze kaart geeft interessante inzichten in het ruimtelijk patroon van onze bebouwing, maar dient niet als ultieme maat voor urban sprawl beschouwd te worden. Het geeft immers geen verdere informatie over de aard van het patroon zelf (buiten homogeen/heterogeen). Deze maat levert daarom weinig extra nuttige info in het kader van deze studie, ten opzichte van de WUP. Daarom wordt deze ook niet verder besproken.
Figuur 40: Lacunarity index op 1km²

Figuur 41: Lacunarity index op 1ha, uitsnede voor de regio Mechelen – Keerbergen (onder, links) en de regio Turnhout (onder, rechts)
4. **Onderdeel 2: Maatschappelijke kosten van sprawl**

4.1. **Literatuurstudie binnen- en buitenlandse studies over gevolgen van sprawl**

4.1.1. **Aanpak en scope**

Op basis van een literatuurstudie van binnen- en buitenlandse wetenschappelijke studies en grijze literatuur, wordt een overzicht gegeven van de voornaamste kosten- en batenposten van sprawl, hoe ze berekend worden en hoe belangrijk ze zijn (relatieve grootte van de kosten). Dit overzicht dient als startbasis om kengetallen voor de Vlaamse context af te leiden die verder gebruikt worden om de kosten van scenario’s met elkaar te vergelijken. De verschillende geraadpleegde bronnen geven een vrij coherente oplijsting van de negatieve gevolgen (kosten) van urban sprawl. De maatschappelijke baten zijn minder vaak onderzocht en worden minder vaak apart vernoemd. We lijsten de baten dan ook niet op als een aparte groep maar bespreken ze wel.

We screenen 3 types van studies:

- **Kwalitatieve studies**, die eerder beschrijvend weergeven wat de effecten zijn van sprawl zonder hier cijfermatig bewijs voor te leveren.
- **Econometrische studies**, die op basis van observaties een statistisch verband aantonen tussen indicatoren m.b.t. sprawl en specifieke kosten- of batenposten. Meestal worden resultaten weergegeven in de vorm van elasticiteiten (in welke mate veranderen kosten (%) als kostendrijvers m.b.t. sprawl veranderen (%)).
- **Kengetal-studies**, die de omvang van de effecten van urban sprawl schatten door het combineren van eenheidscijfers (kengetallen, vuistregels) met de kostendrijvende factoren (bijv. afstand tussen gebouwen, grootte van gebouwen of infrastructuur) op kostenposten.

Verschillende definities en indicatoren worden in deze studies gebruikt om urban sprawl te omschrijven. Vaak worden meerdere indicatoren gehanteerd die zowel bevolking als tewerkstelling beschouwen (bijv. aantal inwoners, aantal huishoudens, aantal en type woningen,...) en bijkomende indicatoren m.b.t. compactheid (afstand tussen gebouwen, onderscheid kerngebieden en versnipperde bebouwing, geaggregeerde indicatoren voor compactheid). De kenmerken van sprawl verschillen sterk tussen landen. Zo wijzen Amerikaanse studies vaak naar het sprongsgewijs karakter van de ontwikkeling (leapfrogging), waarbij kleinere kernen worden ontwikkeld op afstand van de kern van een stad, en met een tussengebied met ander landgebruik. Dit is erg verschillend van bijvoorbeeld de lintbebouwing, hetgeen typisch is voor Vlaanderen. Een overzicht van buitenlandse studies is dus interessant om te bekijken welke effecten bestudeerd zijn, hoe en in welke mate, maar is minder interessant om cijfers over te nemen gezien de vergelijkbaarheid van de ruimtelijke situatie en hoe sprawl omschreven wordt, beperkt is.

We focussen ons bij de literatuurstudie op de context van ontwikkelde landen (OESE) en vanuit de context van demografische en economische groei met groeiende steden. We gaan niet dieper in op studies die dit bekijken vanuit de specifieke context van de krimpende steden.

We bespreken in eerste instantie resultaten voor diverse kosten- en batenposten en bekijken dan ook een aantal scenario-studies waarbij verschillende toekomstbeelden met elkaar vergeleken worden, meer in detail.
4.1.2. **Infrastructuur**

Meerkosten

Directe meerkosten voor infrastructuur omvat de hogere kosten voor boven- en ondergrondse infrastructuur, als gevolg van de grotere afstand tussen gebouwen. Typische onderdelen hiervan zijn wegenis en nutsinfrastructuur, zoals waterleiding, riolering, elektriciteit, gas en tele-communicatie. Grotere afstanden hebben zowel impact op investeringen als onderhoud. Kwalitatief wordt ook vaak gewezen op kosten voor bewoners en de maatschappij in zijn geheel in de vorm van lagere kwaliteit van voorzieningen (minder goed uitgeruste wegen, minder sneeuwruiming, lagere aansluitingspercentages, ...). Naast de hogere kosten omwille van langere afstanden, zijn er mogelijk ook lagere kosten per lopende meter omdat bijvoorbeeld het aanleggen van ondergrondse infrastructuur in onverharde bermen goedkoper is dan onder voetpaden in de stad of omdat infrastructuurwerken in de stad complexer zijn.

Relatief belang

Dit is een belangrijke groep van effecten, die veel is bestudeerd en met eenduidige resultaten uit statistische studies. Effecten worden vooral aangetoond voor wegen en water. De elasticiteit van kosten voor wegen en riolering is typisch -50%, wat wil zeggen dat bij een stijging van de dichtte van bebouwing met 100% de kosten met 50% dalen. Voor leidingwater ligt de elasticiteit eerder rond de -20%. Andere nutsvoorzieningen zijn minder bestudeerd.

Voorbeelden

Studies die een relatie trachten aan te tonen tussen kosten voor infrastructuur en urban sprawl focussen zich vooral op wegen en water (riolering, drinkwatervoorziening). De meest uitgebreide studies zijn gebeurd in Spanje en de Verenigde Staten.

Verenigde Staten en Verenigd Koninkrijk

In de Verenigde Staten vinden Cox en Utt, 2004 op basis van data voor 738 gemeenten (enkel gemeenten in grootstedelijk gebieden met meer dan 1 miljoen inwoners) een significant effect voor bevolkingsdichtheid per gemeente op de bijdragen per persoon voor drinkwater en leidingwater, met een elasticiteit van respectievelijk 14% en 18%. De gehanteerde modellen verklaren wel maar een heel beperkt deel van de variantie in kosten tussen gemeenten (R² van 0.08 en 0.12). Speir and Stephenson, 2002 schatten op basis van een modelmatige studie het effect van kleinere kavels op de investeringskosten per woning voor leidingwater en riolering. Een daling van de kavelgrootte met 50% (van 0.5 tot 0.25 are/kavel) doet de kosten per woning met 20% tot 38% dalen, afhankelijk van de ruimtelijke configuraties. Carruthers et al., 2003 toont op basis van een dataset van 283 Amerikaanse grootstedelijke en snel groeiende regio’s (county level) duidelijke evidentie voor schaalvoordelen en densiteitsvoordelen voor de kosten per inwoner voor diverse soorten infrastructuur. De uitzondering binnen de resultaten is riolering waarvoor men geen stijgende kosten vaststelt wat men toeschrijft aan een lagere rioleringsgraad in de zeer landelijke gebieden. Wenban Smith, 2011 schat apart de schaalvoordelen en densiteitsvoordelen voor de verschillende stappen in de drinkwatersector in de UK (2003) en de US (1996), door middel van een gedetailleerde econometrische analyse van kosten voor de verschillende stappen. Als het aantal inwoners in een stad verdubbelt bij eenzelfde oppervlakte, dalen de kosten per woonenheid met 16%, waarvan ongeveer de helft als gevolg van densiteitsvoordelen bij distributie en de helft voor schaalvoordelen bij productie (waarbij wordt aangenomen dat de stad door één productieeenheid wordt bevoorrad). De studie toont duidelijk
aan dat er schaalvoordelen zijn voor hogere densiteiten en voor het vermijden van suburbane clusters, en dat deze voordelen gelijkaardig zijn voor de twee datasets voor de UK en de US. De kosten voor distributie per wooneneheid zijn 20% lager in een scenario met enkel stedelijk gebied (densiteit van 18 woningen per ha) dan in een gemengd gebied (deels stedelijk, deels suburbaan en landelijk). De studie illustreert dat naast de kosten van sprawl voor distributie (leidingen), sprawl ook effecten kan hebben op de kosten voor drinkwaterproductie.

Spanje

In Spanje wordt vooral gekeken naar verschillen tussen diverse types van woningclusters. Diverse studies schatten via een regressieanalyse de invloed van ruimtelijke variabelen (bevolking, woningen, aantal woonclusters, bevolkingsdichtheid in de cluster) op de investeringskosten per inwoner voor leidingwater, riolering en wegenis. Een voorbeeld is Pietro et al., 2013. De studie kijkt naar het effect voor 2400 voornamelijk zeer landelijke gemeenten in de provincie Castilla y Leon in Spanje. De studie vindt zowel schaalvoordelen als densiteitsvoordelen voor alle drie netwerkvoorzieningen. Dit wordt uitgedrukt als elasticiteiten van de drijvende factoren m.b.t. urban sprawl en hun effecten op de kosten per inwoner. Onderstaande tabel vat de voornaamste resultaten samen. Schaalvoordelen doen zich voor als de bevolking of het aantal woningen per wooncluster stijgt. Als de bevolking in de clusters stijgt met 1%, dalen de kosten per inwoner met 0.63% voor riolering en met 0.89% voor wegenis. Als het aantal woningen daalt (bij gelijkblijvende bevolking) dalen de kosten per inwoner met 0.66% voor riolering en met 0.92% voor wegenis. Ook densiteitsvoordelen of voordelen omwille van dichtere bebouwing worden aangetoond. Als het aantal clusters per gemeente daalt met 1%, dalen de kosten per inwoner met 0.5% voor wegenis en riolering en 0.16% voor leidingwater. Als de clusters compacter worden en de hoeveelheid bebouwd gebied per inwoner met 1% daalt, dalen de kosten per inwoner voor riolering het meest (met 0.7%) en dalen deze voor leidingwater en wegenis met respectievelijk 0.2% en 0.3%. Een beperking van de studie van Pietro et al., 2015 is dat ze geen info heeft of rapporteert m.b.t. afstanden tussen clusters.

3 Een cluster wordt in deze studies gedefinieerd als een groep van minstens 10 gebouwen, die samen een stedelijke lay-out vormen, en waarbij de gebouwen maximaal 200 meter uit elkaar liggen (tenzij het tussenliggend landgebruik bestaat uit parken, kerkhoven, sport en speelterreinen, parkings, industriële of handelszaken, rivieren of kanalen die via een brug kunnen worden overgestoken)
Tabel 4: Schaal- en densiteitsvoordelen voor investeringskosten per inwoner voor netwerkinfrastructuur in Spaanse gemeenten in 2005

<table>
<thead>
<tr>
<th>Indicator sprawl</th>
<th>Effect van 1% stijging van indicator m.b.t. sprawl op kost per inwoner voor (1)</th>
<th>Leidingwater</th>
<th>Riolering</th>
<th>Wegen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaalvoordelen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevolking (aantal inwoners)</td>
<td></td>
<td>-0.85 %</td>
<td>-0.63 %</td>
<td>-0.89 %</td>
</tr>
<tr>
<td>Aantal woningen</td>
<td></td>
<td>-0.66 %</td>
<td>-0.88 %</td>
<td>-0.92 %</td>
</tr>
<tr>
<td>Densiteitsvoordelen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aantal clusters(2) per gemeente (3)</td>
<td></td>
<td>0.16 %</td>
<td>0.45 %</td>
<td>0.52 %</td>
</tr>
<tr>
<td>Compactheid clusters (4)</td>
<td></td>
<td>0.22 %</td>
<td>0.67 %</td>
<td>0.28 %</td>
</tr>
<tr>
<td>Berekenende optimale dichtheid cluster (inw./km²)</td>
<td></td>
<td>3098</td>
<td>4430</td>
<td>2801</td>
</tr>
</tbody>
</table>

(1) Voorbeeld voor een gemeente met 1% meer inwoners zijn de kosten per inwoner 0.85% lager.
(2) Cluster= minimaal 10 gebouwen binnen één stedelijke lay-out,
(3) Indicator voor compactheid op niveau van de gemeente
(4) Indicator voor compactheid binnen de bebouwde clusters, op basis van de oppervlakte bebouwd gebied per inwoner binnen de cluster

Omdat andere Spaanse studies niet dezelfde ruimtelijke indicatoren hanteren zijn de resultaten niet direct te vergelijken. Hortas-Rico et al, 2010 vinden in een studie die kijkt naar gemeentelijke uitgaven gelijkaardige effecten. Als densiteit toeneemt met 1% (indicator vergelijkbaar met compactheid van de clusters) dalen de kosten voor infrastructuur (water, riool, wegen) met 0.28%.

Ewing, 1997 wijst erop dat het verband tussen dichteit en kosten per inwoner voor infrastructuur niet altijd even eenduidig is en dat met name in extreme situaties het plaatje er anders uit kan zien. In gebieden met zeer hoge dichtheden kan de kostprijs van infrastructuur sterk toenemen door de nood aan specifieke infrastructuur. Gelijkaardig kan in situaties met zeer lage dichteiten de kostprijs van infrastructuur sterk dalen, bijvoorbeeld indien er geen nood is aan riolering maar septische putten volstaan of situaties waar wegenis met een lagere kwaliteit voldoende is.

4 Een cluster wordt in deze studies gedefinieerd als een groep van minstens 10 gebouwen, die samen een stedelijke lay-out vormen, en waarbij de gebouwen maximaal 200 meter uit elkaar liggen (tenzij het tussenliggende landgebruik bestaat uit parken, kerkhoven, sport en speelterreinen, parkings, industriële of handelszaken, rivieren of kanalen die via een brug kunnen worden overgestoken)
4.1.3. Transport en mobiliteit

Meerkosten

Effecten van sprawl op transport hebben betrekking op een hogere verplaatsingsafstand per inwoner en het meer gebruik maken van de auto. Dit uit zich in een hoger wagenbezit per persoon en/of huishouden en meer gereden km per wagen, persoon en huishouden. Dit leidt tot hogere private transportkosten (voor de bewoners van de sprawl-gebieden) en tot hogere kosten voor of minder aanbod van openbaar vervoer (omdat densiteiten en de vraag te laag is om voldoende schaalvoordelen te realiseren). Gebruik van openbaar vervoer en actieve transportmodi (wandelen, fietsen) is beperkter.

De effecten m.b.t. infrastructuur (wegen) en transport versterken elkaar. Hogere kosten voor wegen in combinatie met meer wagenbezit en minder openbaar vervoer leiden tot meer kans op beperkte bewandelbaarheid en minder aanbod voor zachte transportmodi (wandelen, fietsen,...) en openbaar vervoer wat op zijn beurt de vraag naar deze transportmodi beperkt. Voor gebruikers zonder wagen leidt dit tot transportarmoede, wat aanleiding geeft tot sociale segregatie terwijl de focus op wagenbezit en transport de sociale contacten beperkt. Er werden geen studies gevonden die specifiek ingaan op de relatie tussen de efficiëntie van openbaar vervoer zelf en sprawl.

Relatief belang

De effecten van sprawl op mobiliteit zijn goed bestudeerd en de resultaten zijn eenduidig. Effecten van sprawl worden aangetoond op het aantal verplaatste kilometers totaal en per modus (meer vervoer met private voertuigen) en voertuigbezit. De bandbreedte in de literatuur geeft aan dat een 10% stijging van de dichteit (wonen of werken) leidt tot een daling van het aantal voertuigkilometer van 1.5% tot 3% (elasticiteiten van -15 tot -30%). In meer compacte wijken en stadscentra is het autobezit zo’n 25% tot 50% lager dan in de suburbanse en landelijke gebieden. Effecten op congestie en goederentransport zijn minder aangetoond.

Voorbeelden

Litman, 2017 geeft een goed overzicht van de effecten van meer compacte (en slimmere) steden op verschillende indicatoren m.b.t. transport. Volgens deze studie leidt in minder dense omgevingen de combinatie van langere afstanden, minder voorzieningen voor openbaar vervoer en betere parkeermogelijkheden tot meer autobezit (aantal auto’s per huishouden of inwoner), langere trips en meer autokm per inwoner, ten koste van actieve transportmodi (wandelen, fietsen) en openbaar vervoer. Deze effecten leiden tot 3 groepen van extra kosten:

a) Meer autokm leiden tot hogere private uitgaven voor transport voor de huishoudens.
b) Minder gebruik van actief transport beperkt de gezondheidsvoordelen van wandelen en fietsen.
c) Meer autokm leiden tot hogere externe kosten voor de maatschappij m.b.t. congestie, veiligheid, leefbaarheid straten en leefmilieu. Een deel van deze maatschappelijke kosten doen zich voor in of treffen ook de inwoners van de stedelijke centra.
De drijvende factoren zijn de verschillende kenmerken van het wegenennetwerk en openbaar vervoer die typerend zijn voor een urbane, suburbane en landelijke omgeving. Deze kenmerken hangen enerzijds samen met fysieke kenmerken (bijv. afstanden tussen locaties, aantal knooppunten per km weg) en met beleidskeuzes (uitrusting wegen, beschikbaarheid en frequentie openbaar vervoer) die op hun beurt worden gedreven door kosten-efficiëntie en het feit dat de kwaliteit van de voorzieningen hoger is in meer dense omgevingen.

De geraadpleegde literatuur focust voornamelijk op het effect van bebouwde omgeving op autokm per huishouden of inwoner. Er is weinig literatuur die dit verder doorvertaalt naar kosten. Litman, 2015 geeft aan dat de jaarlijkse interne kosten per huishouden aan transport toenemen van afgerond 5.000US$ in gebieden met het minste sprawl naar 10.000US$ in gebieden met het meeste sprawl. Als ook externe kosten worden bekeken, neemt dit verschil toe van afgerond 8.000US$ naar 17.000US$. In deze studie zijn effecten op mobiliteit en transport veruit het belangrijkste en veel belangrijker dan deze op infrastructuur en publieke dienstverlening.

Personentransport

Omdat er heel veel kwantitatieve studies zijn naar deze effecten (Ewing en Cervero, 2010 melden meer dan 200 studies) focussen we op de resultaten van enkele recente meta-analyses en overzichtsstudies. De literatuurlijst van Ewing en Cervero, 2010 illustreert dat de studies hoofdzakelijk Amerikaans zijn en dat zij enkel 2 Europese studies (Duitsland en Denemarken) vinden. De kenmerken van de bebouwde omgeving die in dit soort studies worden meegenomen worden ingedeeld in de zes D’s, met name:

- Densiteit (inwoners + jobs/ha);
- Diversiteit (mix wonen en werken);
- Design van het wegenennetwerk (knooppunten, straatbreedte, aandeel voetpaden, straatgroen,…);
- Destination accessibility (gemak om de bestemming te bereiken, bijv. afstand tot bestemming);
- Distance to transit (afstand tot het meest nabije bushalte of station);
- Demand management (beleid m.b.t. parkeren, road pricing,…)

Onderstaande tabel geeft een overzicht van de resultaten uit deze meta-analyses en illustreert dat er veel evidentie is dat een meer compacte en meer divers bebouwde omgeving leidt tot minder voertuigkm en tot meer wandelen en gebruik van openbaar vervoer, maar ook dat de omvang van het effect sterk verschilt tussen studies. Densiteit (inwoners per km²) is een te ruwe indicator om de effecten op transport te vatten, omdat de hoeveelheid open ruimte (bijv. grote parken of landbouwgebieden) een sterke invloed heeft op deze indicator.

De bandbreedte in de literatuur voor studies die enkel naar densiteit kijken geeft aan dat een 1% stijging van de densiteit (wonen of werken) leidt tot een daling van het aantal voertuigkm van 0,14% tot 0,3% (lijn 3 in onderstaande tabel). Als de stijging van de densiteit samengaat met een verbetering van de andere drivers (de andere D’s), kan deze daling toenemen tot 0,4% (Litman, 2017). Deze conclusies zijn gebaseerd op eerdere meta-analyses, die zich beperken tot elasticiteiten voor densiteit (tussen -0.14 (Cervelo, 2001) en -0.30 (Newman et al, 1998)) en anderzijds op recentere meta-analyses die drivers afzonderlijk bestuderen (Ewing en Cervero, 2010, Letman, 2006, Stevens, 2016). Omdat de meta-analyse van Ewing en Cervero, 2010 de breedste scope heeft en ook gebruikt wordt om bijvoorbeeld de impact van sprawl op transport te modelleren (Outwater, 2014) rapporteren we deze data in meer detail. Deze studie toont dat de afzonderlijke effecten per driver eerder beperkt zijn. Hierbij zijn de effecten van de driver densiteit het minst groot. Als de densiteit (inwoners per ha) met 1% stijgt, dan daalt het aantal voertuigkm met 0.04%, wordt er 0.07% meer gewandeld en stijgt het gebruik van openbaar
vervoer met 0.07%. Dit illustreert ook dat deze indicator voor sprawl op zich te ruw is. Daarom moet men ook rekening houden met de effecten van de andere drivers, die op zich ook samenhangen met densiteit. De afzonderlijke effecten van de andere D’s zijn in verhouding veel belangrijker, maar ze zijn wel minder bestudeerd en ze zijn iets moeilijker te hanteren. Zo is bijvoorbeeld ‘destination accessibility’ een belangrijke driver, waarbij ‘afstand tot de stadskern’ een eenvoudige en belangrijke voorspeller is van het aantal autokm. De analyse toont ook dat de drivers verschillen per transportmodus. Voor wandelen zijn verknopingen van het wegennet en wandelafstand tot winkels of jobs belangrijke elementen. Voor openbaar vervoer zijn naast nabijheid van een busstop en een station ook verknopingen in het wegennetwerk belangrijk. Het relatief belang van deze individuele drivers wordt ook erkend en verder kwalitatief geïllustreerd in recente meta-analyses, zoals een literatuurstudie voor Californië (CARB, 2014).

Alle studies erkennen dat een deel van de effecten op wandelen en publiek transport verklaard wordt door zelf-selectie, omdat mensen die deze modi verkiezen sneller in wijken gaan wonen die hiervoor meer geschikt zijn. De meta-analyse van Stevens, 2016 focust op wandelen en openbaar vervoer en corrigeert expliciet voor zelf-selectie. Ook na deze correcties bevestigt ze in grote lijnen de resultaten van Ewing en Cervero, 2010 vnl. m.b.t. densiteit en diversiteit, maar de ranking van verschillende drivers is verschillend. Omdat deze studie ten dele ook andere indicatoren m.b.t. design van het wegennetwerk hanteert, zijn resultaten voor deze aspecten moeilijk te vergelijken. Voor Vlaanderen worden deze algemene conclusies ten dele bevestigd in het in de inleiding vermeld onderzoek naar de invloed van ruimtelijke factoren op het aantal voertuigkm per persoon (Boussauw et al., 2011). Het bevestigt een beperkte invloed van bevolkingsdichtheid en ruimtelijke diversiteit op verplaatsingsgedrag.

Autobezit

Er is in verhouding minder onderzoek naar de effecten op autobezit. Hierbij is het onderscheid tussen wijken met al dan niet goede voorzieningen voor openbaar vervoer belangrijk. Als die er zijn, geven de cijfers aan dat het autobezit (auto’s per huishouden) in ongeveer dezelfde mate daalt als het aantal voertuigkm (Litman, 2017; Ewing en Hamidi, 2014). Ewing en Hamitt, 2014 vinden dat een verbetering van de compactheid van de wijk (die naast densiteit ook met andere factoren rekening houdt) met 10% leidt tot een daling van het autobezit met 0.6% en een daling van het aantal voertuigkm met 7,8% tot 9,5%. Dit alles maakt dat in meer compacte wijken en stadscentra het autobezit (1 tot 1.5 wagens per huishouden) zo’n 25% tot 50% lager is dan in de suburbane en landelijke gebieden (1.7 tot 2.2 wagens per huishouden) (Kuzmyak 2012; Litman, 2017). JICA, 2011 vindt in een vergelijking van autobezit in wereldsteden eveneens evidentie van effecten van sprawl op autobezit.
Tabel 5: Effecten van kenmerken van compacte en slimme bebouwing op personentransport (weg, wandelen en openbaar vervoer)

<table>
<thead>
<tr>
<th>Driver</th>
<th>Indicator</th>
<th>Effect van 1% stijging van indicator m.b.t. sprawl op gebruik transportmodi (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Wegtransport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voertuigkm</td>
</tr>
<tr>
<td>Enkel Densiteit (2)</td>
<td>Inwoners : Inw./km² (hh/km²)</td>
<td>-0.14% tot -0.30%</td>
</tr>
</tbody>
</table>

Effecten opgesplitst naar meerdere drivers (3)

<table>
<thead>
<tr>
<th>Driver</th>
<th>Indicator</th>
<th>Effect van 1% stijging van indicator m.b.t. sprawl op gebruik transportmodi (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Wegtransport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voertuigkm</td>
</tr>
<tr>
<td>Densiteit</td>
<td>Inwoners : Inw./km² (hh/km²)</td>
<td>-0.04%</td>
</tr>
<tr>
<td>Tewerkstelling: Jobs/km²</td>
<td>0.00%</td>
<td>0.04%</td>
</tr>
<tr>
<td>Diversiteit</td>
<td>Mix landgebruiken (entropy)</td>
<td>-0.09%</td>
</tr>
<tr>
<td>Jobs-woningen balans</td>
<td>-0.02%</td>
<td>0.19%</td>
</tr>
<tr>
<td>Afstand tot nabije winkel (-)</td>
<td>0.25%</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>Knooppunten wegennet</td>
<td>-0.12%</td>
</tr>
<tr>
<td>% 4-wegs knooppunten</td>
<td>-0.12%</td>
<td>-0.06%</td>
</tr>
<tr>
<td>Destination acc.</td>
<td>Jobs bereikbaar met de auto (-)</td>
<td>-0.20%</td>
</tr>
<tr>
<td>Jobs bereikbaar met OV</td>
<td>-0.05%</td>
<td></td>
</tr>
<tr>
<td>Afstand tot stadscentrum (+)</td>
<td>-0.22%</td>
<td></td>
</tr>
<tr>
<td>Jobs binnen 1,3 km</td>
<td>0.15%</td>
<td></td>
</tr>
<tr>
<td>Distance openbaar Vervoer</td>
<td>Afstand tot nabije stop openbaar vervoer (-)</td>
<td>0.15%</td>
</tr>
</tbody>
</table>

(-) : negatieve variabele

(1) illustratie van interpretatie resultaten: een stijging van het aantal inwoners per km² met 1% doet aantal voertuigkm dalen met 0.14% tot 0.3%.

(2) Litman (2017); Cervelo (2001); Newman en Kenworthy (1998)

(3) Ewing en Cervero (2010), meta-analyse van 200 kwantitatieve studies

Congestie en totale transporttijd

Er zijn nauwelijks studies die de impact van sprawl op congestie kwantitatief inschatten (Outwater, 2014; Ewing et al., 2014). Een hogere densiteit leidt enerzijds tot kortere reisafstanden en dus kortere reistijden. Reistijden kunnen echter ook toenemen als congestie toeneemt in dense gebieden. Aan de hand van een eenvoudig rekenmodel illustreren Cervero en Kockelman (1997) dat als densiteit toeneemt omdat men eenzelfde aantal huishoudens op een kleiner gebied concentreert (hogere dichteit), deze twee elementen van eenzelfde orde van grootte zijn en de totale reistijd ongeveer gelijk blijft. Als dichteit toeneemt door in eenzelfde gebied de bevolkingsdichtheid te verhogen zonder bijkomende investeringen in transportinfrastructuur, domineert het tijdsverlies door congestie. Als bijkomende investeringen zich richten op wegtransport met de auto, zal dit bijkomende transportvraag genereren, wat de analyse nog meer complex maakt.

Liu, 2007 vindt in een vergelijkende studie van transport survey data dat voor mensen in een meer compacte omgeving de kortere afstand opweegt tegen de lagere gemiddelde snelheden bij verplaatsingen. Ook Lewis, 2017 vindt via een gelijkaardige methodiek dat in meer compacte steden het aantal trips dezelfde blijven maar door kortere afstanden en gebruik van andere modi de gemiddelde tijd per trip (en dus ook de totale transporttijd) korter is.

Er zijn nauwelijks studies die naar het geheel van transportkosten en andere kosten kijken. Ewing en Hamitt, 2014 vinden dat de totale kosten voor transport (uitgedrukt als % van het inkomen) in
meer compacte wijken (1% compacter) 0,35% lager liggen. Hier tegenover staat dat de kosten voor wonen 0,11% hoger liggen.

Goederentransport

In verhouding is er nauwelijks onderzoek naar de effecten van sprawl op goederentransport, en de weinige info illustreert dat dit gevalspecifiek is en afhangt van o.a. transportbeleid zodat dit niet toelaat om hiervoor effecten te schatten (Outwater, 2014).

4.1.4. Publieke dienstverlening

Meerkosten

Een derde groep van effecten heeft te maken met hogere kosten (en/of lagere kwaliteit) voor publieke dienstverlening. Het gaat hierbij om diensten waarbij afstand tussen gebouwen relevant is (bijvoorbeeld brandweer, postbedeling, afvalophaling), waarbij meer privaat wagentransport en verbonden problemen m.b.t. congestie en ongevallen leidt tot hogere kosten (politiestations en andere diensten) of waarbij lagere densiteit en compactheid leidt tot minder schaalvoordelen (educatie, administratieve diensten). Deze meerkosten komen vooral tot uiting indien de diensten lokaal worden georganiseerd en gefinancierd (bijvoorbeeld afvalophaling, brandweer, politie). Bij diensten die meer centraal worden georganiseerd en gefinancierd, zijn deze meerkosten meer verborgen (gesolidariseerd) en moeilijker te achterhalen.

Het geheel van de bevindingen in de literatuur suggereert dat ten eerste gemeentes of districten moeilijk te vergelijken zijn omwille van verschillen in kwaliteit van diensten, dat schaaleffecten niet lineair maar waarschijnlijk eerder U-vormig zijn (laagste kosten per inwoner ergens tussen gebieden met heel lage en heel hoge densiteiten) en dat de optimale schaal verschilt voor verschillende publieke diensten.

Relatief belang

Dit is een groep van effecten die ook uitvoerig bestudeerd is, zij het in mindere mate als de voorgaande twee posten. De resultaten uit de verschillende studies zijn ook minder eenduidig. Studies uit Spanje geven een elasticiteit voor totale overheidsuitgaven van ongeveer -10% t.o.v. densiteit. Voor specifieke diensten zoals afvalinzameling is het beeld minder eenduidig en speelt zowel de afstand tussen woningen als congestie (langer onderweg per woning) een rol.

Voorbeelden

Gemeentelijke diensten

Het geheel van deze bevindingen suggereert dat ten eerste gemeentes of districten moeilijk te vergelijken zijn omwille van verschillen in kwaliteit van diensten, dat schaaleffecten niet lineair maar waarschijnlijk eerder U-vormig zijn (laagste kosten per inwoner ergens tussen gebieden met...
heel lage en heel hoge densiteiten) en dat de optimale schaal verschilt voor verschillende publieke diensten (Benito, 2010).

Voor Europa zijn er recentere enkele gedetailleerde studies voor Spanje, die we in meer detail toelichten. De Spaanse studies verklaren ruim de helft van de variantie in de uitgaven per inwoner tussen de gemeenten (Benito, 2010; Solé-Ollé et al., 2015; Fernandez Ortuno et al., 2016) wat beduidend meer is dan de minder gedetailleerde Amerikaanse studies (Carruthers en Ulfarsson, 2003; Cox en Utt, 2004; Carruthers en Ulfarsson, 2008).

Solé-Ollé et al., 2015 maakt gebruik van een uitgebreide dataset van gemeentelijke uitgaven (2500 gemeenten van meer dan 1000 inwoners), ruimtelijke indicatoren (bevolkingsdichtheid, aantal eenpersoonshuismen, % verspreide bewoning buiten woningclusters en aantal clusters per gemeente), bestuurlijke kenmerken en verklarende variabelen m.b.t. demografie en socio-economische kenmerken (inkomen, loonniveaus, belang toerisme). De ruimtelijke indicatoren zijn gelijkwaardig aan deze in Pietro et al, 2015. De studie vindt een duidelijk verband tussen sprawl met totale overheidsuitgaven en uitgaven per beleidsdomein. Onderstaande tabel geeft een overzicht in de vorm van elasticiteiten. Het effect is het meeste duidelijk en homogeen voor de toename van urbane oppervlakte per inwoner. Als deze stijgt met 1%, varieert de toename van de kosten per inwoner tussen 0.10% tot 0.23%. Dit illustreert het belang van densiteit voor de meeste beleidsdomeinen zoals politie, afval, cultuur en sport en algemene administratie.

Tabel 6: Schaal en densiteitsvoordelen voor gemeentelijke uitgaven per inwoner in Spaanse gemeenten (Solé-Ollé et al., 2015)

<table>
<thead>
<tr>
<th>Beleidsdomeinen</th>
<th>Gemeentelijke uitgaven</th>
<th>Effect van 1% stijging in sprawl indicator op de uitgaven per inwoner voor deze publieke dienst</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>€/inw. (1) (%)</td>
<td>Densiteit (m²/ inw) (2)</td>
</tr>
<tr>
<td>Totale uitgaven</td>
<td>782 100%</td>
<td>0,11%</td>
</tr>
<tr>
<td>Totale lopende uitgaven</td>
<td>516 66%</td>
<td>0,11%</td>
</tr>
<tr>
<td>Wegenis en riolering</td>
<td>92 12%</td>
<td>0,28%</td>
</tr>
<tr>
<td>Lokale politie</td>
<td>28 4%</td>
<td>0,10%</td>
</tr>
<tr>
<td>Afval, watervoorziening,</td>
<td>80 10%</td>
<td>0,11%</td>
</tr>
<tr>
<td>straatreiniging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huishvesting – onwikkeling</td>
<td>124 16%</td>
<td>Ns</td>
</tr>
<tr>
<td>Cultuur en sport</td>
<td>115 15%</td>
<td>0,17%</td>
</tr>
<tr>
<td>Algemene administratie</td>
<td>128 16%</td>
<td>0,12%</td>
</tr>
</tbody>
</table>

ns : geen significant effect op de uitgaven voor dit beleidsdomein

Bron: Solé-Ollé, 2015 op basis statistische analyse op data voor 2500 Spaanse gemeenten, voor 2003
(1) Uitgaven per inwoner (€/inwoner; 2003)
(2) Aandeel in totale gemeentelijke uitgaven
(3) Urbane oppervlakte per inwoner (gemiddeld 261 m²/inwoner). Dit is dus omgekeerd in vergelijking met inwonersdichtheid.

5 De ruimtelijke indicator m.b.t. clusters is dezelfde voor de verschillende Spaanse studies. Een kern/cluster wordt beschouwd als een groep van minstens 10 gebouwen, die samen een stedelijke lay-out vormen, en waarbij de gebouwen maximaal 200 meter uit elkaar liggen (tenzij het tussenliggend landgebruik bestaat uit parken, kerkhoven, sport en speelterreinen, parkings, industriële of handelszaken, rivieren of kanalen die via een brug kunnen worden overgestoken.)
Alhoewel de resultaten niet één op één vergelijkbaar zijn, zijn er andere studies voor Spanje die gelijkaardige effecten vinden. Fernandez Ortuno et al, 2016 vindt op basis van een analyse voor 1928 gemeenten (+ 2000 inwoners) voor uitgaven tussen 2009-2014 effecten dat een lagere bevolkingsdichtheid leidt tot hogere uitgaven. De sprawl indicator kijkt naar het aantal mensen binnen de clusters en is zowel een indicator voor schaal als densiteit. De kosten per inwoner omvatten het geheel van uitgaven m.b.t. infrastructuur (wegenis, openbaar vervoer, riolering, watervoorziening), openbare veiligheid, afvalbeleid, verkeer en verlichting, openbaar groen, energie, ruimtelijke ordening, Het resultaat geeft aan dat 1% stijging in het aandeel van de compacte bewoning (bevolking binnen de clusters) samengaat met een daling van kosten per inwoner met 0.22%. Dit effect is ongeveer het dubbele van de bovenvermelde studie in de tabel (Solé-Ollé et al., 2015). Benito et al., 2010 vindt op basis van een analyse van 3000 gemeenten voor de periode 2009-2014 dat een lagere bevolkingsdichtheid leidt tot hogere uitgaven en dat het effect het grootst is voor investeringsuitgaven. Een 1% hogere dichtheid leidt tot 0.15% lagere uitgaven per inwoner, gelijkaardig aan dat van Solé-Ollé et al., 2015.

De Spaanse studies omvatten geen gegevens m.b.t. onderwijs, omdat dit niet tot de gemeentelijke bevoegdheid behoort. De Amerikaanse studies kijken wel bijkomend naar effecten op kosten voor onderwijs, maar de resultaten lopen uiteen (Benito et al., 2010) en de interpretatie is niet éénduidig (Cox en Utt, 2004).

Afvalophaling

Het effect van sprawl op afvalophaling en verwerking zijn – in vergelijking met water - moeilijker via vergelijkende studies te schatten, omdat verschillen in totale kosten veel sterker uiteenlopen en door allerhande factoren worden bepaald. Er zijn maar een tiental studies die de relatie tussen sprawl en kosten m.b.t. afval onderzoeken. Vroegere studies (1965 – 2005) op basis van eenvoudige regressie en samenvattende indicatoren m.b.t. sprawl vinden geen of tegenstrijdige effecten (Abrate, 2012). Recentere en meer geavanceerde studies schatten een kostenfunctie voor afvalophaling, waarbij verschillende indicatoren m.b.t. bevolkingsdichtheid en ruimtelijke kenmerken expliciet als kostendrijver zijn gemodelleerd. Een beperkte studie voor Portugal (Simoens en Marques, 2011 voor 34 gemeenten) en een heel uitgebreide studie voor Italië (500 gemeenten en cijfers voor 3 jaar in Abrate, 2012) toont dat er twee tegengestelde effecten van belang zijn. De kosten dalen enerzijds omdat de afstanden tussen de woningen kleiner worden. Daartegenover staat dat de kosten toenemen door het effect van congestie op de kosten. Dit laatste effect is dominant in deze studie.
4.1.5. Bouwkosten en verbruik woningen

Meerkosten

Compactere wijken leiden tot lagere financiële kosten voor het bouwen (minder materiaal) en verwarmen van woningen, wat een financieel voordeel is voor de eigenaar/bewoner. Daarenboven leidt dit tot minder maatschappelijke milieukosten als gevolg van minder verbruik van materialen en energie. Bovendien zijn de woningen per huishouden kleiner.

Relatief belang

Er werden geen studies gevonden die een kwantitatief verband leggen tussen sprawl en de kostprijs van woongebouwen. Er zijn ons geen studies bekend naar de effecten van sprawl op de bouwkosten van woongebouwen. Er zijn ook geen data over bijv. eenheidskosten in de bouw die een statistische analyse van effecten van sprawl toelaten. Er zijn een beperkt aantal studies die kosten voor verschillende type gebouwen simuleren, en die vooral toelaten om de effecten van compactheid op bouwkosten, energieverbruik en milieukosten van materialen mee te nemen.

Een simulatie van alle kosten over de hele levenscyclus van verschillende types woningen in Vlaanderen toont aan dat de financiële kost per m² nuttige vloeroppervlakte hoger zijn voor minder compacte bouwvormen. Voor een nieuwbouw situatie zijn de kosten voor een appartement of gesloten bebouwing gelijk, en zijn de kosten voor een halfopen en open bebouwing respectievelijk 6% en 18% hoger. Voor bestaande niet-geïsoleerde gebouwen zijn de verschillen veel groter omwille van hogere energiekosten in de gebruiksfase.

Voorbeelden

Vlaanderen

We moeten hierbij onderscheid maken tussen bouwkosten (voor nieuwbouw) en kosten voor aankoop bestaande woning/appartement en gebruikskosten (energie, onderhoud).

Bij nieuwbouw leidt een hogere dichteit (inwoners/ha) gemiddeld genomen tot een meer compacte bouwwijze (lager aandeel open bebouwing, meer bouwlagen) wat kan leiden tot:

1. lagere bouwkosten per m² woonoppervlakte en lagere kosten voor energiegebruik voor huishoudens
2. lagere kosten voor energiegebruik gedurende de hele levenscyclus van de woning
3. lagere milieukosten verbonden met bouwmaterialen en gebruik van de woning.
4. lagere kosten voor verwerving bouwgrond (minder m²) en voor aanleg en onderhoud buitenruimtes (tuin, terras,...).

Anderzijds leiden compactere bouwvormen zoals appartementen ook tot bijkomende kosten (liften, gemeenschappelijke ruimtes) en vereist het bouwen een andere aanpak en type bedrijven wat zowel tot lagere kosten (schalvoordelen) als extra kosten (coördinatie,) kan leiden.

Voor Vlaanderen heeft Trigeaux, 2017 in detail de financiële en milieukosten berekend van een kleine wijk met 4 types woningen. Het gaat hierbij telkens om woonenheden voor 4 personen met 150 m² nuttige vloeroppervlakte. Hierbij worden bestaande, oude woningen en nieuwbouw onderscheiden. De kosten voor de bouw en gebruik van de woning worden berekend voor de ganse levenscyclus (over 60 jaar), waarbij ook rekening wordt gehouden met gemiddelde uitgaven voor transport. De studie berekent de financiële kosten en daarnaast de milieu-impacts op basis van een LCA (levenscyclus) analyse waarbij ook de milieu-impacts worden gemonetariseerd op basis van kengetallen voor milieu-impacts.
De resultaten zijn weergegeven in onderstaande figuur. We focussen op de financiële levenscyclus kosten voor de woningen, exclusief kosten voor transport in de gebruiksfasen en exclusief kosten voor grondverkaveling. Voor bestaande, oude gebouwen zijn de totale kosten, uitgedrukt per m² nuttige vloeroppervlakte, respectievelijk 13% en 26% hoger voor een gesloten en een halfopen bebouwing dan voor een appartement, en 40% hoger voor een open bebouwing. Deze verschillen worden verklaard door een hogere materiaalkost maar vooral een hogere energiekost in de gebruiksfasen. De aannemer hierbij is dat het gaat om woningen zonder isolatie, met enkel glas en een verouderd verwarmingssysteem. De verschillen worden nog groter als we de kosten voor de grond en tuin meenemen.

Bron: Trigeaux, 2017

Figuur 42: Impact van compacte woningtypes op financiële kosten over de levenscyclus

Voor nieuwbouw die voldoet aan de Vlaamse energienormen voor 2017, liggen de totale levenscycluskosten voor materiaalgebruik hoger maar dit wordt meer dan gecompenseerd door een daling van de energiekosten in de gebruiksfasen, zodat voor alle types de totale kosten gemiddeld 20% lager zijn. De impact van compact bouwen op de totale kosten is minder groot, omdat er nog wel verschillen zijn in de materiaalkosten, maar de verschillen in energiekosten in de gebruiksfasen heel beperkt zijn. De totale kosten voor een appartement en gesloten woning zijn ongeveer gelijk, terwijl de kost voor een halfopen en open bebouwing respectievelijk 6% en 18% hoger liggen (Trigeaux, 2017). Als we ook rekening houden met de milieu-impacts, op basis van de gemonetariseerde milieukosten dan zijn de conclusies gelijkaardig. Deze milieukosten zijn lager voor compactere bouwvormen, en vooral voor de bestaande bebouwing zijn de verschillen groot omwille van verschillen in energieverbruik. Voor nieuwbouw worden in verhouding milieu-impacts van materiaalgebruik belangrijker, en zijn verschillen tussen de types beperkt.

Buitenland
Er zijn ons geen gelijkwaardige buitenlandse studies bekend die dit dermate in detail uitwerken. Litman, 2014 geeft aan dat het type woningen sterk verschilt in sprawl gebieden of gebieden met zogenaamde “smart growth” en dat de hoeveelheid ruimte die benodigd is per woningen toeneemt in sprawl gebieden. Dit is niet alleen beperkt tot de woning zelf, maar ook de
hoeveelheid verharding naast de woning neemt toe naarmate de woningen een meer open karakter hebben.

De marktprijs voor aankoop of huur van bestaande woningen is gemiddeld genomen hoger in een meer compact gebied, o.a. omwille van de nabijheid jobs en hogere lonen terwijl transportkosten lager zijn, zodat men meer geld kan besteden voor aankoop of huur van woningen. Ook lagere werkkingskosten voor energieverbruik kunnen weerspiegeld worden in hogere marktprijzen van woningen. Deze effecten bespreken we verder bij sociale impacts.

4.1.6. Gezondheid

Meerkosten

Inwoners in compactere wijken hebben gemiddeld gezien een betere gezondheid omwille van meer beweging en minder auto-gerelateerde ongevallen. De positieve effecten zijn groter dan een aantal negatieve effecten (vaak slechtere luchtkwaliteit en meer geluidshinder in compactere kernen).

Relatief belang

Er zijn relatief weinig studies die het verband tussen sprawl en gezondheid bestuderen. Meestal hangen gezondheidseffecten ook samen met mobiliteit (al eerder aan bod gekomen). Een recente Amerikaanse studie toont aan dat als de compactheid van de wijk met 10% stijgt, de prevalentie van 3 chronische ziektes (obesitas, hartziektes en hoge bloeddruk) daalt, de levensverwachting stijgt en het aantal slachtoffers van auto-ongevallen daalt.

Voorbeelden

De meest gedetailleerde en uitgebreide informatie komt uit het recente onderzoeksprogramma (smart growth america program) dat in de VS werd opgezet om de impact van sprawl op o.a. volksgezondheid in kaart te brengen, en waarvan de voornaamste resultaten in onderstaande tabel zijn samengebracht (Ewing en Hamidi, 2014). Hiertoe is eerst een indicator ontwikkeld om de compactheid van een wijk te meten (compactness), die rekening houdt met 4 factoren (densiteit van wonen en werken, mix van landgebruiken, nabijheid wonen en werken en connectiviteit van het stratennetwerk; Ewing, 2014b). Voor elke factor worden een reeks indicatoren beschouwd om dit te meten.

Onderstaande tabel toont dat er een significante relatie is tussen deze indicator voor compactheid van de wijk en 3 chronische ziektes die geassocieerd worden met overgewicht en tekort aan beweging. Als de compactheid met 10% stijgt, dalen het voorkomen van obesitas (-3.6%), hartziektes (- 3.2%) en hoge bloeddruk (-1.7%) en stijgt de levensverwachting (+ 0.4%). Deze resultaten zijn in lijn met eerder onderzoek in de VS (Ewing, 2003; Frumkin, 2004). Ten tweede leidt 10% meer compactheid tot minder slachtoffers van auto-ongevallen (-0.6% gewonden en -13.8% dodelijke auto-ongevallen).

De tabel lijst ook enkele indicatoren op m.b.t. de verklarende mechanismen. De impact van compactheid op autobezit en verplaatsingsgedrag (voertuigkm) verklaart goed de effecten op auto-ongevallen. Deze impacts zijn ook verder gedetailleerd en onderbouwd (Ewing et al., 2007; Ewing et al., 2016).

De impact van compactheid op beweging geeft een meer gemengd beeld. De resultaten tonen wel een effect van bijv. compactheid op het aandeel van wandelen in de modal split, maar toont
geen significant effect op andere indicatoren m.b.t. beweging (any physical activity). We moeten daarbij wel opmerken dat het in het algemeen moeilijk is om beweging voor dit soort studies goed te kwantificeren.

Tabel 7: Effecten van compacte wijken op volksgezondheid en auto ongevallen

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Relationship to Compactness</th>
<th>Impact of 10% Score Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average household vehicle ownership</td>
<td>Negative and significant</td>
<td>0.6% decline</td>
</tr>
<tr>
<td>Vehicle miles traveled</td>
<td>Negative</td>
<td>7.8% to 9.5% decline</td>
</tr>
<tr>
<td>Walking commute mode share</td>
<td>Positive and significant</td>
<td>3.9% increase</td>
</tr>
<tr>
<td>Public transit commute mode share</td>
<td>Positive and significant</td>
<td>11.5% increase</td>
</tr>
<tr>
<td>Average journey-to-work drive time</td>
<td>Negative and significant</td>
<td>0.5% decline</td>
</tr>
<tr>
<td>Traffic crashes per 100,000 population</td>
<td>Positive and significant</td>
<td>0.4% increase</td>
</tr>
<tr>
<td>Injury crash rate per 100,000 pop.</td>
<td>Positive and significant</td>
<td>0.6% increase</td>
</tr>
<tr>
<td>Fatal crash rate per 100,000 population</td>
<td>Negative and significant</td>
<td>13.8% decline</td>
</tr>
<tr>
<td>Body mass index</td>
<td>Negative and significant</td>
<td>0.4% decline</td>
</tr>
<tr>
<td>Obesity</td>
<td>Negative and significant</td>
<td>3.6% decline</td>
</tr>
<tr>
<td>Any physical activity</td>
<td>Not significant</td>
<td>0.2% increase</td>
</tr>
<tr>
<td>Diagnosed high blood pressure</td>
<td>Negative and significant</td>
<td>1.7% decline</td>
</tr>
<tr>
<td>Diagnosed heart disease</td>
<td>Negative and significant</td>
<td>3.2% decline</td>
</tr>
<tr>
<td>Diagnosed diabetes</td>
<td>Negative and significant</td>
<td>1.7% decline</td>
</tr>
<tr>
<td>Average life expectancy</td>
<td>Positive and significant</td>
<td>0.4% increase</td>
</tr>
</tbody>
</table>

Effect van een 10 % stijging van de indicator voor compactheid (compactness) op gezondheid

Bron: Ewing en Hamidi (2014)

4.1.7. **Sociale effecten**

Meerkosten

Onder sociale effecten worden uiteenlopende effecten van urban sprawl gegroepeerd. Sommige studies argumenteren dat compactere en meer bewandelbare wijken leiden tot meer sociale contacten en interactie in meer compacte wijken, wat het sociale kapitaal versterkt en leidt tot meer sociaal en politiek engagement, minder vereenzaming en een hogere levenskwaliteit (Putnam, 2000; Nguyen, 2010; Brueckner, 2006).

Een ander sociaal effect van urban sprawl is dat het de problemen versterkt voor lagere inkomens m.b.t. toegankelijkheid en betaalbaarheid van wonen en transport. In minder compacte wijken leidt het beperkt aanbod van openbaar vervoer tot transportarmoede voor wie minder toegang heeft tot privaat wegtransport, en dit leidt op zijn beurt tot bijvoorbeeld minder sociale interactie (Ewing, 2014; Brueckner, 2006).

Anderzijds leiden grotere en densere steden tot grotere ongelijkheid, omdat hoge kwalificaties en talenten beter beloond worden, wat zich verder vertaalt in hogere prijzen voor wonen en diensten (Eeckhout, 2014; Cottineau et al., 2016). Dit hangt samen met het effect van dichte op productiviteit.

Relatief belang

In verhouding tot de vorige impacts is het moeilijker om het relatief belang hiervan te duiden, omdat de wetenschappelijke studies m.b.t. sprawl en sociaal kapitaal een gemengd beeld geven van de gevolgen, het relatief belang van de verschillende indicatoren en de kwantificering van de effecten moeilijker te interpreteren zijn.
Voorbeelden

De waarde van het sociale kapitaal in een wijk kan gemeten worden aan de hand van kwantiteit en kwaliteit van verschillende contacten, mate van vertrouwen en engagement e.d. De sociale effecten die beschreven worden hangen voornamelijk samen met transport, en betreffen enerzijds de kansen op transportarmoede, minder contacten door meer privaat transport en sociale segmentatie in functie van wagenbezit. In statistische analyses is getoetst in welke zin en mate deze indicatoren verschillen in functie van de compactheid van wijken. Om effecten van bevolkingsdichtheid of sprawl te onderzoeken corrigeren deze econometrische of statistische studies normaliter voor verschillen in inkomens, etnische achtergrond, en andere sociaal-economische variabelen. Er zijn dus mogelijk wel verschillen tussen kerngebieden en gebieden met sprawl, maar deze worden dan niet toegeschreven aan sprawl zelf.

Ierland

De analyse van Leyden, 2003 op basis van een survey bij 280 inwoners in Galway, Ierland vind een hogere score voor sociaal kapitaal voor inwoners uit een meer voetgangersvriendelijke wijken met gemengd landgebruik dan voor deze uit auto georiënteerde buitenwijken, wat zich uit in meer contacten met de buren, meer vertrouwen in anderen en een groter sociaal en politiek engagement. In een wijk die 1 punt hoger scoort op een walkability schaal van 1 tot 10, hebben inwoners gemiddeld 28% meer contacten met buren, en scoren ze 15% hoger op de index voor politiek engagement en vertrouwen.

VS

Nguyen, 2010 onderzocht voor de VS de relatie tussen sprawl en sociaal kapitaal (op basis indicatoren uit de social capital community benchmark survey). Hij vindt significante, positieve effecten van compactheid op politieke participatie maar negatieve effecten op sociale interactie, vertrouwen, giften en vrijwilligerswerk. De studie besluit dat sociale contacten hoofdzakelijk beïnvloed worden door individuele factoren en dat de effecten van de bebouwde omgeving beperkt en variabel zijn. Ook Brueckner, 2006 vindt geen bevestiging in de data voor het effect van sprawl op sociaal kapitaal. De methode is gelijkwaardig aan deze van Nguyen, en de statistische analyse geeft aan dat het aantal sociale contacten met buren lager is voor buurten met hogere dichteit.

Ewing en Hamidi, 2014, vinden een positief verband tussen compactheid van de wijk en de sociaal-economische opwaartse mobiliteit. Voor wijken met een 10% hogere score voor compactheid (dezelfde indicator voor analyse van de effecten op gezondheid), is de kans dat kinderen die geboren zijn in de laagste inkomensklasse de hoogste inkomensklasse bereiken voor hun 30e, 4.1% hoger.

4.1.8. Economische ontwikkeling

Meerkosten

De effecten van sprawl op de economie en productiviteit worden ook wel omschreven als agglomeratie-voordelen (Parr, 1979; Lee en Gordon, 2007; Fallah, 2011; Veneri, 2011). Een densere ruimtelijke structuur kan leiden tot hogere productiviteit, zodat met eenzelfde eenheid inputs (arbeid en kennis, grondstoffen en energie) er meer output wordt geproduceerd, wat zich vertaalt in indicatoren voor arbeidsproductiviteit en groei. De verklaring is dat door een grotere concentratie van mensen en jobs er voordelen zijn m.b.t. de schaal (delen van kosten en infrastructuur over meer mensen en jobs), allocatie (arbeidsmarkt werkt beter, meer specialisatie van diensten) en innovatie (snellere verspreiding van kennis en nieuwe technologie). Anderzijds leidt hogere concentratie ook tot meerkosten, bijv. voor congestie, en hogere prijzen voor wonen.
en grond en minder open ruimte. Dit maakt dat men niet eenvoudig een optimale schaal en structuur kan identificeren (Veneri, 2011; Cottineau et al., 2016). Andere auteurs zoeken verklaringen ook in de aantrekkelijkheid van steden omwille van aanbod van cultuur en uitgaansmogelijkheden, hetgeen hoogopgeleide en productievare mensen aantrekt wat op zijn beurt leidt tot hogere productie (Falah, 2011).

Relatief belang

De effecten van agglomeratievoordelen zijn goed en eenduidig gedocumenteerd. Het aandeel van densiteit in de agglomeratievoordelen is minder bestudeerd en de resultaten zijn minder eenduidig. Onderstaande resultaten van statistische analyses geven een idee van de omvang van deze effecten. De meta-analyse van Melo et al., 2009 schat de elasticiteit van agglomeratievoordeel op productiviteit gemiddeld op 6%, en het literatuuronderzoek van Rosenthal en Strange, 2004 geeft hiervoor een bandbreedte van 3% tot 8%. Carlino, 2007 schat de elasticiteit voor het effect van stedelijke densiteit op het aantal patentaanvragen op 20% tot 30% (Carlino et al, 2007).

Voorbeelden

Verenigde staten

Cervero, 2001 vindt op basis van vergelijkend onderzoek tussen 47 stedelijke agglomeraties een positief effect van job densiteit en stedelijkheid op arbeidsproductiviteit, maar geen schaaleffecten.

Falah, 2011 vindt op basis van een vergelijkend onderzoek van stedelijke agglomeraties in de VS een significant, negatief effect tussen de mate van sprawl (op basis van densiteit en mix van landgebruik) met arbeidsproductiviteit, zowel totale arbeidsproductiviteit als productiviteit binnen industriële sectoren en binnen opleidingsniveaus of kwalificaties. Een toename van sprawl met één standaarddeviatie gaat samen met een daling van de arbeidsproductiviteit met 14.5%.

Gelijkwaardig onderzoek in de VS dat ook variabelen meeneemt m.b.t. de ruimtelijke configuratie zelf (bijv. mononcentrisch versus polycentrisch) nuanceert deze algemene stelling en suggereert dat configuratie en schaal deze effecten vertekent (verzwakt of versterkt) (Lee en Gordon, 2007; Meijers, 2010).

De meta-analyse van Melo et al., 2009, geeft een elasticiteit van 5.8% voor het schaaleffect van voor steden, maar besluit dat studieresultaten erg locatie-specifiek zijn, met bijvoorbeeld grote verschillen tussen landen en regio’s en sectoren. Op basis van literatuuronderzoek geven Rosenthal en Strange, 2004 een bandbreedte van 3% tot 8% voor de elasticiteit op productiviteit.

Italië

Veneri et al., 2011, onderzoekt deze relaties voor Italië op basis van indicatoren voor regio’s (NUTS 3), en op basis van specifieke indexen uit de literatuur m.b.t. densiteit (centralisatie, wheaton index) en ruimtelijke configuratie (geen index voor polycentriciteit). Deze studie bevestigt het effect voor densiteit, een verdubbeling van de densiteit gaat samen met een hogere arbeidsproductiviteit van 2,7%.
4.1.9. Behoud van open ruimte

Meerkosten

Verspreide bebouwing kan leiden tot meer inname van open ruimte door verstedelijking. Een verlies aan open ruimte betekent een verlies van de diensten die deze ruimte levert ten voordele van de maatschappij (ook vaak ecosysteemdiensten genoemd) en versnippering van open ruimte heeft ook negatieve gevolgen voor biodiversiteit.

Relatief belang

De nadelen van verlies aan open ruimte worden meestal kwalitatief geduid in studies. Meer en meer zijn er methodes beschikbaar om ook het verlies aan open ruimte kwantitatief te waarderen op basis van ecosysteemdiensten, maar in de wetenschappelijke literatuur werden geen studies gevonden die de impact van sprawl vertalen in een verlies aan ecosysteemdiensten.

Voorbeelden

4.1.10. Scenario-analyses

Scenario-analyses vergelijken de kosten van alternatieve toekomstbeelden waarbij de mate van sprawl varieert. Deze studies zijn kengetal-studies en hanteren kengetallen gecombineerd met kostendrijvers om totale kosten voor scenario’s te berekenen. De focus van dit soort berekeningen ligt vooral op infrastructuur (wegen, drinkwater en riolering, nutsleidingen).

Burchell, 2002

Opzet

Burchell, 2002 berekent de kosten van 2 scenario’s (BAU en minder sprawl) om in de US 60 miljoen mensen extra te huisvesten over de periode 2000-2025. In het scenario met minder sprawl worden deze mensen gehuisvest in andere types woningen (meer hoogbouw en gesloten bebouwing en minder open bebouwing) die meer in de kernen zijn gelegen. Beide mechanismen leiden tot kostenbesparingen voor infrastructuur. De scenario’s zijn geconcipieerd als realistische, beperkte afwijkingen van de trends. Zo wordt in het ‘minder sprawl scenario’ 30% van de woningen in ruraal gebied gebouwd versus 37% in BAU (-7%). Hierbij stijgt het aandeel mensen dat in appartementen en half-open bebouwing woont en daalt het aandeel in open bebouwing. Deze (beperkte) veranderingen leiden tot minder nieuwe wegen en minder infrastructuur voor water en riolering.

Kostendrijvers

Voor leidinginfrastructuur zijn de voornaamste kostendrivers in de scenario-analyse een beperking van het aantal nieuwe aansluitingen (de studie rekent één aansluiting per instrument en voor een koppelwoning) en minder meter leiding/riool per aansluiting in stedelijk gebied in vergelijking met suburbaan (-18%) en ruraal gebied (-35%). Hiertoe zijn scenario’s verder ontwikkeld, ruimtelijk gespecifieerd en doorgerekend met specifieke modellen, bijv. voor riolering. Anderzijds houdt de studie er rekening mee dat in stedelijk gebied wegen beter zijn uitgerust en duurder zijn en dat aanleg van ondergrondse infrastructuur ook duurder is. In vergelijking met ruraal gebied wordt de meerkosten per meter leiding of riool ingeschat op +11% voor suburbaan gebied en +20% voor urbaan gebied. Tot slot houdt men ook rekening met een iets lager drinkwaterverbruik in de stad in vergelijking met het suburbaan of ruraal gebied (minder sproeien van tuin), maar dit element is in het geheel van de effecten heel beperkt.

Resultaten van scenario’s

Netto leidt het scenario met 7% meer wooneenheden in stedelijk gebied en compactere bebouwing tot een daling met 10,5% van het aantal bijkomende meter infrastructuur, zowel voor drinkwater als riolering. Omdat de leidingen in stedelijk gebied iets duurder zijn, is het totale effect op de kosten iets lager, met name 6,6% voor drinkwater en 6,7% voor riolering, uitgedrukt als % van de totale kosten.

Halifax (Canada)

Opzet

In Canada leeft de bezorgdheid dat stadsuitbreiding met meer verspreide bebouwing negatieve effecten heeft voor de begroting van de gemeenten. In dat kader zijn studies opgezet om kengetallen en rekentools voor kosten te ontwikkelen (HCM, 2003 en HCM, 2008), en de effecten door te rekenen voor type situaties (Halifax, 2006), alsook voor gedetailleerde scenario’s m.b.t. de locatie van 75.000 nieuwe wooneenheden in Halifax (Halifax, 2013).
Kostendrijvers
De kengetallen onderscheiden kosten voor wegen, leidinginfrastructuur (drinkwater, riolering, elektriciteit, kabel) met onderscheid naar lokale en bovenlokale infrastructuur, en gemeentelijke diensten.

- Voor de lokale infrastructuur is het aantal meter (afstand tussen woningen) de voornaamste kostendrijver, zowel voor investeringen als voor werking. Voor bovenlokale infrastructuur (collectoren,…) is het aantal aangesloten personen de voornaamste kostendrijver, en deze verschillen dus weinig tussen typsituaties of scenario’s.

- Voor transport leiden kortere afstanden tussen woningen tot meer openbaar vervoer en actieve transportmodi en tot minder voertuigkilometers, vooral in de piek.

- Voor uitgaven m.b.t. de gemeentelijke diensten (afval, politie, brandweer, culturele en administratie) zijn de kengetallen gebaseerd op het aantal personen of gezinnen, en zijn er dus geen directe meerkosten als gevolg van sprawl. Men rekent wel de extra gereden km, vnl. door de gebruikers van de diensten.

De resultaten zijn o.a. weergegeven in onderstaande infographic, waar het verschil in de gemeentelijke uitgaven voor stedelijk (urban) en randstedelijk (suburban) wonen worden vergeleken. Belangrijke randbemerking hierbij is dat voor een heel deel kosten uitgegaan wordt van verschillende huishoudgroottes in urban (1,6 personen per huishouden) en in suburban (3 personen per huishouden) en dat kosten voor een aantal diensten (politie, brandweer, bibliotheek, parken, administratie-governance, school busses) vooral verschillen omwille hiervan, eerder dan omwille van verschillen in woondichtheden. De meeste van deze dienstverlenende posten zijn in Figuur 43 dan ook eenzelfde factor hoger in de suburban gebieden dan de gemiddelde grootte van de huishoudens. Er zijn geen verschillen aangetoond i.v.m. afval. Onderscheid zit dus nog vooral in infrastructuur en mobiliteit.

Figuur 43: Infographic kostenverschil gemeentelijke uitgaven urban en suburban op basis van data van Halifax, Canada (Smart Prosperity Institute, 2018)
Resultaten scenario-berekening

In Halifax, 2013 werden meer gedetailleerd scenario’s opgesteld en kosten berekend. Voor de methode van kostenberekening werden gedetailleerdere modellen ingezet die afwijken van de benadering die hierboven is beschreven in de infographic.

De stad Halifax verwacht dat zijn bevolking zal groeien en dat er 75.000 extra woonenheden nodig zijn om deze te huisvesten. De stad heeft de effecten op private, publieke en externe kosten van 4 alternatieve groeiscenario’s met verschillende dichtheden onderzocht. De verschillen in scenario’s hebben zowel betrekking op locatie van bewoning en tewerkstelling. In scenario’s met minder sprawl wordt bewoning en tewerkstelling meer gelokaliseerd op gewenste locaties (meer in urbaan versus suburbaan en ruraal), en meer in meergezinswoningen. Gewenste locaties voor bewoning zijn geselecteerd op basis van de afstand tot het wegen- en riolnetwerk, en het vermijden van natuurgebieden en overstromingsgevoelige gebieden. Tewerkstelling is gealloceerd op basis van bestaande locaties (industrie en grote kantoren) en lokale diensten zijn gealloceerd dicht bij woonlocaties.

In het meest verregaande scenario voor vermindering van sprawl krijgt - in vergelijking met het BAU-scenario 34% van de woonenheden een andere locatie. Ze “verhuizen” van het rurale (8%) en vooral suburbaanse (26%) gebied naar het stadscentrum. In een minder verregaand scenario verhuizen 24% van de woningen (8% ruraal en 16% suburbaan). De studie volgt de bestaande regelgeving, die voor de stadskern vaker meergezinswoningen voorziet, zodat in de scenario’s 60% van de extra woonenheden meergezinswoningen zijn, t.o.v. 40% in BAU. De studie berekent de totale uitgaven voor de gemeente in de periode 2009-2031 voor de verschillende scenario’s, en rekent totale uitgaven over die periode terug naar een gemiddelde jaarlijkse uitgave. Voor infrastructuur zijn deze kosten gedomineerd door de investeringen. Om de cijfers makkelijker te interpreteren rekenen we ze om naar gemiddelde jaarlijkse uitgaven per woonenheid in euro.

De totale jaarlijkse infrastructuurkost (wegenis, water en riolering, elektriciteit en kabel) per woonenheid daalt van € 1750 per woonenheid (75.000 woonenheden) in het BAU tot respectievelijk € 1450en € 1150 in de scenario’s (= - 17% en – 34%). De reductiepercentages verschillen relatief weinig tussen de verschillende infrastructuurposten. De kostenbesparingen volgen de verschillen in de nodige meters wegenis (lokaal en bovenlokaal), en eenheidskosten voor urbaan en andere gebieden zijn dezelfde. In rurale gebieden worden andere technieken gehanteerd (grachten, private grondwaterwinning en zelfzuivering). Hierdoor zijn procentgewijs de vermeden infrastructuurkosten voor water en riolering iets lager dan voor wegenis. Voor elektriciteit en kabel zijn de meerkosten beperker, omdat de kosten per meter lager zijn voor ondergrondse infrastructuur, en omdat in de landelijke gebieden ook bovengrondse leidingen worden aangelegd, die in verhouding veel goedkoper zijn.

Tegenover deze besparing voor infrastructuur staat een meerkost voor stadsparken, teneinde de doelstellingen voor het minimaal aantal m² stadsgroen per inwoner te realiseren. Dit vergt hoge kosten voor parkuitbreiding, geschat op een jaarlijkse kost van 1€ 30 tot 1€ 200 per woonenheid. Dit komt dus neer op ongeveer één derde van de baten m.b.t. infrastructuurkosten. Deze meerkost wordt voornamelijk gedreven door kosten voor verwerven van gronden.

Voor diensten (brandweer, politie, bibliotheek,...) zijn de besparingen lager (-10% en -12 %), maar is de relatie met sprawl ook minder sterk omdat de kostendriers vooral per woning of per persoon zijn ingeschat. De besparingen weerspiegelen vooral kortere afstanden en tijdsverlies voor gebruikers ervan.

De vermeden kosten voor transport en vermeden tijdswinsten door congestie zijn van eenzelfde orde van grootte als de vermeden kosten voor infrastructuur (omgekerend € 400en € 600 per jaar per woonenheid). De modal schift (meer naar openbaar vervoer en actieve transportmodi) vergt extra kosten voor openbaar vervoer, maar deze zijn beperkt in vergelijking met de vermeden
kosten voor transport en wegenis. De vermeden transportkosten leiden verder tot vermeden externe kosten m.b.t. gezondheid (emissies) en broeikasemissies. De baten worden ingeschat op basis van kengetallen per kg vermeden emissie, en zijn samen goed voor 13% van de totale baten van scenario’s met minder sprawl.

De studie houdt geen rekening met mogelijke verschillen in private kosten voor woningen en autobezit.

Omdat voor infrastructuur de kostendrijvers voor investeringen en werkingskosten gelijkwaardig zijn, zijn ook de verschillen tussen de scenario’s gelijkwaardig. Voor de beschouwde periode overwegen de investeringskosten.

Samengevat

Deze studie bevestigt het potentieel voor kostenbesparing bij beperking van sprawl uit de vorige statistische studies en bekijkt dit voor een breed aantal kostencategorieën. Voor wegenis en infrastructuur bevestigt het dat een scenario met minder sprawl (1% meer woongelegenhied in kerngebied en meer compactere bebouwing) de infrastructuurbaten dalen met 0,5% tot 1%. Daarnaast zijn er de baten van vermeden autokilometers en de hiermee vermeden externe kosten voor luchtverontreiniging, geluid en congestie. In deze case studie zijn de vermeden kosten voor infrastructuur en transport van eenzelfde orde van grootte en zijn zij relevant. Deze baten zijn voldoende groot om extra investeringen voor openbaar vervoer en meer stadsparken te financieren.
4.1.11. Conclusies literatuurstudie

Onderstaande tabel omvat de voornaamste kostenposten van sprawl en beschrijft in welke mate in de bestaande literatuur gedocumenteerd is dat sprawl daadwerkelijk meerkosten veroorzaakt. De voornaamste kostenposten zijn infrastructuur en transport en mobiliteit. Ook is er een mogelijke impact op de kosten van publieke dienstverlening maar dit is minder eenduidig aangetoond. Bij andere kostenposten is de informatie vooral kwalitatief.

<table>
<thead>
<tr>
<th>Kostenpost</th>
<th>Aangetoonde meerkosten sprawl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Infrastructuur</td>
<td></td>
</tr>
<tr>
<td>Wegenis andere nutsvoorzieningen: waterleiding en riolering, elektriciteit, gas, internet, straatverlichting, dijken en overstromingsgebieden</td>
<td>Goed gedocumenteerd en eenduidige resultaten. Meerkost sprawl vooral aangetoond voor wegen en water, en lagere kwaliteit nutsvoorzieningen. Omvang: De elasticiteit op densiteit van kosten voor wegen en riolering is typisch -50% en voor leidingwater -20%.</td>
</tr>
<tr>
<td>2. Transport en mobiliteit</td>
<td></td>
</tr>
<tr>
<td>Personenvervoer verplaatsingsgedrag: vervoer met de auto, wagenbezit, openbaar vervoer, autodelen, parkeren, wandelen en fietsen goederenvervoer: pakjesdiensten, logistiek</td>
<td>Goed gedocumenteerd, eenduidige resultaten. Effecten sprawl aangetoond voor personenvervoer op het aantal verplaatste kilometers totaal, per modus en voertuigbezit. Omvang: De elasticiteit van voertuigkilometers op densiteit bedraagt -15 tot -30%. In meer compacte wijken en stadscentra is het autobezit 25% tot 50% lager dan in de suburbane/landelijke gebieden. Effecten op congestie en goederentransport zijn minder aangetoond.</td>
</tr>
<tr>
<td>3. Publieke dienstverlening</td>
<td></td>
</tr>
<tr>
<td>scholen, gezondheidszorg, politie, brandweer, afvalophaling, administratieve diensten gemeente, post, pakjesbedeling, publieke sportinfrastructuur en speeltuinen</td>
<td>Minder studies en minder eenduidige resultaten. Omvang indien aangetoond: Elasticiteit op densiteit van 10% voor totale overheidsuitgaven. Voor specifieke diensten zoals afvalinzameling is beeld minder eenduidig, zowel de afstand tussen woningen als congestie (langer onderweg per woning) zijn belangrijk. Bijkomend leidt sprawl tot lagere kwaliteit van dienstverlening.</td>
</tr>
<tr>
<td>4. Bouwkosten en verbruik woningen</td>
<td></td>
</tr>
<tr>
<td>Bouwkosten, energieverbruik en materiaalgebruik open bebouwing versus meer geconcentreerde bebouwing</td>
<td>Beperkt gedocumenteerd. Omvang: financiële kost per m² nuttige vloeropervlakte zijn hoger voor minder compacte bouwwormen. Bij nieuwbouw zijn de kosten voor een halfopen en open bebouwing respectievelijk 6% en 18% hoger. Voor bestaande niet geïsoleerde gebouwen zijn de verschillen veel groter omwille van hogere energiekosten in de gebruiksfase.</td>
</tr>
<tr>
<td>Kostenpost</td>
<td>Aangetoonde meerkosten sprawl</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>5. Behoud van open ruimte</td>
<td>Kwalitatieve beschrijving: versnippering habitats, schade door overstromingen, bosbranden, waterkwaliteit, ...</td>
</tr>
<tr>
<td>ecologische kwaliteit, biodiversiteit en ecosysteemdiensten zoals voedselproductie, verkoeling, infiltratie en beheersing waterkwantiteit, CO2 opslag, recreatie en appreciatie van het landschap</td>
<td></td>
</tr>
<tr>
<td>Verlies aan gezondheid door minder bewegen en meer auto-ongevallen</td>
<td>Omvang: Als de compactheid van de wijk met 10% stijgt daalt de prevalentie van 3 chronische ziektes, stijgt de levensverwachting en daalt het aantal slachtoffers van auto-ongevallen.</td>
</tr>
<tr>
<td>Minder sociale contacten in wijk en opbouw sociaal kapitaal en cohesie, als gevolg van verplaatsingspatronen</td>
<td>In een wijk die 1 punt hoger scoort op een walkability schaal van 1 tot 10, hebben inwoners gemiddeld 28% meer contacten met buren, en scoren 14% en 15% hoger op de index voor politiek engagement en vertrouwen.</td>
</tr>
<tr>
<td>Meer ongelijkheid en minder opwaartse sociaal-economische mobiliteit.</td>
<td></td>
</tr>
<tr>
<td>Verlies aan welvaart door lager aanbod aan voorzieningen en veroorsaamde</td>
<td></td>
</tr>
<tr>
<td>7. Economische ontwikkeling</td>
<td>Goed gedocumenteerd effect met een grote bandbreedte in schattingen van het schaaleffect voor steden en uiteenlopende resultaten voor effecten van densiteit en ruimtelijke configuratie.</td>
</tr>
<tr>
<td>Meer compacte wijken en steden genieten van de schaalvoordelen van agglomeraties, met hogere arbeidsproductiviteit, betere allocatie van jobs en meer innovatie.</td>
<td>Omvang: elasticiteit van 6% (3% tot 8%) voor arbeidsproductiviteit t.o.v. omvang wijk.</td>
</tr>
<tr>
<td>Goed gedocumenteerd effect met een grote bandbreedte in schattingen van het schaaleffect voor steden en uiteenlopende resultaten voor effecten van densiteit en ruimtelijke configuratie.</td>
<td>Gezien het effect vooral aangetoond is voor grote metropolitane gebieden die ver uit elkaar liggen of vergelijkingen tussen grote provincies is de transfereerbaarheid van deze resultaten voor de verschillende sprawltypes in de Vlaamse context niet mogelijk.</td>
</tr>
</tbody>
</table>
4.2. Huidige meerkosten van sprawl in Vlaanderen

4.2.1. Methodologie

In dit hoofdstuk worden de huidige meerkosten berekend van sprawl in Vlaanderen. We beschrijven in eerste instantie de eenheidskosten die gebruikt worden in de raming van de kosten voor de verschillende kostenposten. Deze eenheidskosten zijn in eerste instantie gebaseerd op specifieke bronnen uit de literatuur, en zijn in een tweede stap gedubbelcheckt en vergeleken met data of kengetallen die ontvangen werden van specifieke stakeholders. Tot slot combineren we eenheidskosten met kostendrijvers om het verschil in kosten tussen verschillende vormen van bebouwing (verspreide bebouwing, verkavelingen en linten, dorpskernen en stadsranden en stadskernen) zoals die in onderdeel 2 zijn opgenomen te berekenen.

Daarnaast halen we ook allerhande kwalitatieve informatie aan. Dit betekent dat er een aantal kosten aangegeven worden door stakeholders of literatuur zonder dat hier kwantitatieve informatie voor beschikbaar is. De kosten worden erkend maar het is niet geweten hoe groot ze zijn of ze zijn van die aard (bijvoorbeeld beleving van het landschap) dat het moeilijk is om hier cijfers aan te koppelen.

Figuur 44: Stapsgewijze berekening huidige kosten van sprawl in Vlaanderen

We drukken kosten uit voor verschillende parameters:
- Per gebouw is de gemiddelde kost per hoofdgebouw zoals die zijn opgenomen in het GRB.
- Per huishouden is de gemiddelde kost per huishouden (bewoond adres).
- Per inwoner en tewerkgestelde is de gemiddelde kost per inwoner en persoon tewerkgesteld.

Het aantal inwoners en tewerkgestelden worden opgeteld en evenveel gewogen.

Ter info geven we hier het relatieve aandeel van de sprawltypes weer voor verschillende indicatoren. Afhankelijk van de indicator verandert het aandeel en dit zal ook een impact hebben op de kosten en de relatieve verhoudingen tussen de diverse sprawltypes.
Figuur 45: Relatief aandeel per sprawltype in Vlaanderen voor diverse indicatoren

Kostenberekening

Voor de berekening van kosten van urban sprawl wordt alles omgerekend naar een jaarlijkse eenheidskost. Dit gebeurt voor investeringen in infrastructuur door rekening te houden met de eenmalige investeringskost, de typische levensduur van de infrastructuur en het jaarlijkse onderhoudspercentage dat wordt uitgedrukt in % t.o.v. de investeringskost. Eenmalige kosten worden omgerekend naar jaarlijkse kosten op basis van een discontovoet van 2,5%, conform de richtlijnen voor de actualisatie van discontovoeten opgenomen in de standaardmethodiek MKBA (Rebel, 2018). Op basis van literatuur en feedback van stakeholders worden eenheidskosten afgeleid. We trachten hierbij ook zoveel mogelijk een onderscheid te maken tussen stedelijke en landelijke context, gezien dit een impact kan hebben op eenheidskosten.

Het prijspeil voor deze kosten ligt ongeveer op 2014. De schattingen zijn niet in dergelijke mate gedetailleerd om correcties op het prijspeil te motiveren.

Door eenheidskosten te koppelen aan geografische informatie over de hoeveelheid infrastructuur, ruimtegebruik of verplaatsingsgedrag voor de verschillende sprawl-types worden de huidige verschillen in jaarlijkse kosten per gebouw, per huishouden of per inwoner en tewerkgestelde berekend.
Stakeholderbevraging

De stakeholderbevraging was vooral gericht op het beter onderbouwen van kosten die gehanteerd worden in deze studie en ook om kwalitatieve informatie over de mogelijke meerkosten van sprawl te verzamelen. Met name werd ook ingegaan op het verschil in kosten tussen stedelijke en landelijke omgeving. Daarnaast werd ook gepolst naar beschikbare databronnen.

De volgende stakeholders werden hierbij geraadpleegd:

<table>
<thead>
<tr>
<th>Organisatie</th>
<th>Contactpersoon</th>
<th>Kostenpost</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOW</td>
<td>Kim Wouters</td>
<td>Infrastructuur en mobiliteit</td>
</tr>
<tr>
<td>VVSG</td>
<td>Christophe Claeys</td>
<td>Infrastructuur: water</td>
</tr>
<tr>
<td>VVSG</td>
<td>Christof Delatter</td>
<td>Publieke dienstverlening: Afval</td>
</tr>
<tr>
<td>Ecowerf</td>
<td>Peter Standaert</td>
<td>Publieke dienstverlening: Afval</td>
</tr>
<tr>
<td>VMM-MIRA</td>
<td>Sander Devrient</td>
<td>Mobiliteit</td>
</tr>
<tr>
<td>VITO</td>
<td>Marlies Vanhulsel</td>
<td>Mobiliteit</td>
</tr>
<tr>
<td>TMLeuven</td>
<td>Inge Mayeres</td>
<td>Mobiliteit</td>
</tr>
<tr>
<td>Vlario</td>
<td>Wendy Francken</td>
<td>Infrastructuur: riolering</td>
</tr>
<tr>
<td>Aquaflanders</td>
<td>Jens Timmermans</td>
<td>Infrastructuur: watervoorziening</td>
</tr>
<tr>
<td>VMM</td>
<td>Peter Aelterman</td>
<td>Infrastructuur: riolering</td>
</tr>
<tr>
<td>MOW</td>
<td>Klaas Ryckaert</td>
<td>Infrastructuur: Overstromingen</td>
</tr>
<tr>
<td>AWV</td>
<td>Jeroen Bulckaen</td>
<td>Mobiliteit</td>
</tr>
<tr>
<td>AWV</td>
<td>Pascal Lammar</td>
<td>Mobiliteit: ongevallen</td>
</tr>
<tr>
<td>KULeuven</td>
<td>Damien Trigaux</td>
<td>Infrastructuur en Gebouwen</td>
</tr>
<tr>
<td>De Lijn</td>
<td>Hans Van Hoof</td>
<td>Mobiliteit en infrastructuur</td>
</tr>
<tr>
<td>De Lijn</td>
<td>Nick Abrams</td>
<td>Mobiliteit en infrastructuur</td>
</tr>
<tr>
<td>Infrax / Fluvius</td>
<td>Raf Bellers</td>
<td>Infrastructuur: Nutsvoorzieningen</td>
</tr>
<tr>
<td>VVSG</td>
<td>Jan Leroy</td>
<td>Publieke dienstverlening</td>
</tr>
<tr>
<td>Waterlink</td>
<td>Johan Cornelis</td>
<td>Infrastructuur: water</td>
</tr>
<tr>
<td>De Watergroep</td>
<td>Luc Keustermans</td>
<td>Infrastructuur: water</td>
</tr>
<tr>
<td>Universiteit Antwerpen</td>
<td>Dirk Vrebos</td>
<td>Behoud van open ruimte en ecosysteemdiensten</td>
</tr>
<tr>
<td>Bpost</td>
<td>Chris Vansnick</td>
<td>Publieke dienstverlening</td>
</tr>
</tbody>
</table>

De meeste van deze stakeholders werden volgens een vast stramien telefonisch of face to face bevraagd. Na een korte introductie tot de doelstelling en aanpak van de studie, werd de vraagstelling als volgt voorgelegd:

- Overlopen van de long list van kostenposten: volledigheid, welke posten zijn relevant voor de stakeholder?
- Voor de specifieke kostenposten relevant voor de stakeholder werd meer in detail ingegaan op:
 - Beschikbare data / studies - kengetallen (investering, onderhoud, afschrijvingstermijn) en totale uitgaven
 - Toetsing van beschikbare Vlaamse gegevens aan de experten-opinie
 - Kostenverschillen en kostendrijvers kernbebouwing versus verspreide/lint-bebouwing
Deze resultaten werden gerapporteerd in een verslag dat ter goedkeuring werd voorgelegd aan de stakeholder. Eventuele opmerkingen werden hierna verwerkt. Bovenstaande lijst bevat ook een aantal leden van universiteiten of onderzoeksbureaus. Deze personen werden gecontacteerd met specifieke vragen voor het aanleveren van data en achtergrondinformatie bij berekeningen om de bruikbaarheid van de geraadpleegde bronnen uit de literatuur beter te kunnen beoordelen.
4.2.2. Infrastructuur

Eenheidskosten

Literatuurgegevens

Een life cycle costing berekening van wegenis, inclusief infrastructuur in residentiële wijken is uitgevoerd door Trigaux et al., 2017. Investeringskosten zijn bepaald op basis van een gedetailleerde berekening van vereiste materialen en werkzaamheden, gekoppeld aan eenhedsijfers uit de Belgische Aspen databank en het Britse Spon’s Price Book.

Tabel 8: Mediaan schatting investeringskosten wegenis inclusief nutsvoorzieningen per lopende meter weg (Trigaux et al., 2017)

<table>
<thead>
<tr>
<th>€/m wegtipe (5m breed)</th>
<th>Asfalt</th>
<th>Beton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graafwerken</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Bewapening</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Onderfundering - gemengd puin</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Fundering - cement gebonden</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Asfalt laag</td>
<td>222</td>
<td>0</td>
</tr>
<tr>
<td>Beton laag</td>
<td>0</td>
<td>227</td>
</tr>
<tr>
<td>Goot, inclusief bedding</td>
<td>162</td>
<td>177</td>
</tr>
<tr>
<td>Regenwater afvoer - betonnen buizen</td>
<td>266</td>
<td>266</td>
</tr>
<tr>
<td>Geulen - inclusief aansluiting riolering</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>Riolering - gresbuizen</td>
<td>206</td>
<td>206</td>
</tr>
<tr>
<td>Nutsvoorzieningen - water en gas</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>Nutsvoorzieningen - elektriciteit en data</td>
<td>278</td>
<td>278</td>
</tr>
<tr>
<td>Verlichting</td>
<td>73</td>
<td>73</td>
</tr>
<tr>
<td>Totaal</td>
<td>1.652</td>
<td>1.677</td>
</tr>
<tr>
<td>Fietspad beton 1,75m breed</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>Voetpad betonklinkers</td>
<td>117</td>
<td>117</td>
</tr>
<tr>
<td>Totaal inclusief fiets- en voetpad</td>
<td>1.897</td>
<td>1.922</td>
</tr>
</tbody>
</table>

De gemiddelde onderhoudskost per jaar liggen tussen 1% en 1,5% van de investeringskost. Een levensduur van wegen wordt verondersteld op 60 jaar, maar beton wordt vervangen na 40 jaar en asfalt na 30 jaar.

Dernau et al., 2015 werken eveneens met een eenheidskost van € 1900 per lopende meter weg, inclusief nutsinfrastructuur, voor de aanleg van wegen op nieuwe bedrijventerreinen. De kostprijs voor wegenis, excl. nutsinfrastructuur van Trigaux et al., 2017 zit in dezelfde orde-grootte als andere bronnen (±/− € 1100 per lopende meter, inclusief regenwaterafvoer en fiets- en voetpaden). Allaerts en van Zwam, 2009 geven eenheidskosten van € 1000 per lopende meter voor de aanleg van KMO zones. Andere beschikbare bronnen over wegenis incl. infrastructuur gaan ook in de ordegrootte van € 1.200 per lopende meter weg voor wegaanleg, exclusief nutsvoorzieningen en groenaanleg (GWW Kompas, 2011).

Naast investeringen, onderhoud en afbraakkosten wordt in Trigaux et al., 2017 ook gekeken naar de milieukosten (externe effecten) omwille van materiaalgebruik, energie- verbruik, landbezetting en o.a. afgeleide effecten op klimaatverandering, verzuring en eutrofiëring. Deze effecten worden ook monetair gewaardeerd. Voor de investeringen bedraagt de mediaan schatting van deze kosten € 278 en € 290 per lopende meter weg inclusief fiets- en voetpaden. Dit
is beperkt tot aanleg van wegenis incl. infrastructuur en omvat niet de negatieve effecten omwille van het transport zelf. Voor het onderhoud bedragen de jaarlijkse bijkomende milieukosten ongeveer 1% van de eenmalige investeringen.

Feedback stakeholders op kostencijfers

Gezien bovenstaande kostencijfers specifiek gelden voor residentiële wijken en ook gebaseerd zijn op eenheidskosten uit de UK, is bijkomend geïnformeerd bij diverse stakeholders naar eenheidskosten en specifieke verschillen in kosten tussen stedelijk en landelijk gebied. Ook zijn een aantal bijkomende bronnen uit de literatuur geraadpleegd. We lijsten hierbij de belangrijkste bevindingen op.

Wegenis

Vanuit een aantal nutsbedrijven wordt aangegeven dat € 1.100 per lopende meter voor de aanleg van wegen redelijk lijkt. Er wordt ook gewezen op de grote diversiteit in kosten in functie van de diversiteit van wegen (vb. breedte van de weg). *Er is geen specifieke informatie voorhanden over verschillen in kostprijzen tussen landelijk en stedelijk gebied*. Mogelijk zit hier een onderschatting van de meerkost per lopende meter in stedelijk gebied. Naast de breedte speelt ook het type wegedek een rol.

In een antwoord van Minister Weyts aan het Vlaams parlement wordt aangegeven dat kosten voor onderhoud van wegen ongeveer € 17 per lopende meter bedraagt (+/- 1,5% van de investering). Deze laatste post omvat o.a. maai- en veegwerken, reinigen van kolken, het aanbrengen van wegmarkeringen, winterdienst (leveren van chemische smeltmiddelen, strooien en sneeuwruimen), enz.

Riolering

Kostprijzen voor riolering zoals opgenomen in bovenstaand overzicht worden in het algemeen als te laag beoordeeld. VMM (VMM, 2010) hanteert voor de berekening van de financieringsnoodzaak in Vlaanderen voor riolering 500 euro/m voor een inzamelriool in buitengebied, exclusief BTW en wegeniswerken. Aangezien rioleringswerken doorgaans op 60% en wegeniswerken op 40% van de totale kost worden geraamd, betekent dit een totale kost per lopende meter inzamelriool van 825 euro/m excl. BTW. De kosten voor transportriool worden, geraamd op 500 euro/m voor het riool zelf en 100 euro/m voor beperkte grond- en wegeniswerken of 600 euro/m in totaal. De gemiddelde kostprijs voor een riool in het centraal gebied wordt identiek geacht aan de hoger vermelde kost voor inzamelriool in het buitengebied, nl. 825 euro/m. De exploitatiekost of onderhoudskost wordt geraamd op 0,7% van de nieuwwaarde, en dit zowel voor de herbruikbare riolering als de nieuw aan te leggen riolering. Een levensduur van 75 jaar wordt verondersteld. Ook interessant om te beschouwen is de kostprijs van een individuele zuivering (IBA - 5.677 euro per installatie) voor verderaf gelegen woningen. VVSG hanteert dezelfde eenheidsprĳzen in 2014 voor de berekening van de financieringsnoodzaak bij de gemeentes.

VVSG en Infrax geven beiden aan dat klassieke eenheidskosten voor riolering € 300-400 per lopende meter riool in landelijke context bedragen en € 800 per lopende meter in stedelijke context. Onderhoudspercentages van 0.5% tot 0.75% worden als redelijk beschouwd. Riolering heeft typisch een levensduur van 75 jaar.

VMM en Vlario geven aan dat recente schattingen op basis van uitgevoerde projecten (GIP-subsidiedossiers) tot een veel hogere gemiddelde eenheidsprijs komen tussen € 900 en 2000 per lopende meter ongeveer. De mediaan schatting voor het aanleggen van riolering in centraal gebied is geschat op 1.349 euro per meter riool. De mediaan schattingen voor inzamelriool en verbindingssriool in buitengebied bedragen resp. 990 en 612 euro per lopende meter. Deze kostprijzen zijn afgeleid uit een heterogene groep van projecten. De grote spreiding maakt dan
ook duidelijk dat er grote verschillen zijn naargelang de bodemgesteldheid, de bufferingseisen, technische randvoorwaarden, de nodige diepte en het grondverzet, ... De kosten liggen heel wat hoger dan de kosten die in de vorige paragrafen zijn opgegeven en ook standaard gehanteerd zullen worden in deze studie voor scenario-berekeningen e.d. De belangrijkste redenen hiervoor zijn het feit dat vooral uitgegaan wordt van een gescheiden stelsel en dat het gaat over de afzonderlijke aanleg van een rioleringsstelsel, waarbij wegenis, voetpaden, e.d. niet gezamenlijk worden heraangelegd.

Water-link geeft aan dat kosten van € 2000 per lopende meter aan de hoge kant zijn en eerder aansluiten bij stedelijke context, maar er wordt inderdaad een trend vastgesteld dat kosten stijgen omwille van de aanleg van gescheiden stelsels en grotere buizen door hemelwaterplannen. Een kostprijs van € 1200-2000 per lopende meter is standaard in stad Antwerpen bijvoorbeeld.

Watervoorziening en gas

Water-link geeft aan dat de kostprijs per lopende meter drinkwater in stedelijk gebied rond de € 190 ligt. De kostprijs voor waterleiding in een stedelijke omgeving versus landelijke omgeving ligt factor 2 hoger. De aanleg van buizen is duurder, het onderhoud is moeilijker, de kans op schade door werken is veel hoger, bestrating moet vaak veel zwaarder zijn en er is meer signalisatie nodig bij werken.

De levensduur van het huidig materiaal is lang. Buizen gaan theoretisch gezien 100 tot 120 jaar mee. Dit is langer dan de standaard levensduur van riolering gezien buizen kleiner zijn, materiaal beter is en ze minder worden blootgesteld aan verontreiniging. Een onderhoudspercentage tussen 0.5% en 0.75% lijkt redelijk standaard. De Watergroep bevestigt dat infrastructuur technisch gezien tot 100 jaar kan meegaan, maar in praktijk gebeurt dit zelden omwille van lange termijn evoluties, beschadiging of vervanging door werken nabij, etc. Een afschrijvingstermijn van 75 jaar lijkt logisch.

Kostprijzen voor gas liggen volgens Infrax rond de € 110 per lopende meter in landelijk gebied en € 160 per lopende meter in stedelijk gebied. Herstelling van wegenis is hierbij een belangrijke verschilfactor bij aanleg. Een typische levensduur ligt rond de 50 jaar.

Volgens De Watergroep liggen aansluitingskosten voor een woning rond de € 1000-1100 per woning. Bij een onderboring van de weg is dit het dubbele.

Elektriciteit en data-transmissie

Infrax geeft gemiddelde ramingen tussen € 20 (bovengronds) en € 40 (ondergronds) per lopende meter voor aanleg van laagspanningsnetten in landelijk gebied. In stedelijk gebied loopt dit op naar € 85 per lopende meter voor ondergrondse netten. Voor kabeldistributie zit dit rond de € 10 en € 25 per lopende meter in landelijk gebied en € 75 per lopende meter in stedelijk gebied.

Onderhoudskosten liggen tussen 0.5% en 1% van de investering.

Naast het aantal lopende meter speelt dus ook het type leiding (ondergronds, bovengronds) een rol en of leidingen aanwezig zijn langs weerszijde van de weg of aan één enkele zijde. Bij ondergrondse leidingen zijn onderboringen vereist indien leidingen langs één enkele zijde van de weg liggen. Indien er voldoende woningen aanwezig zijn, kan het goedkoper zijn om aan weerszijde van de weg leidingen aan te leggen i.p.v. boringen uit te voeren. Bij bovengrondse leidingen is quasi alles éénzijdig gezien dit ook geen onderboringen vergt. Uit cijfers van Infrax kan afgeleid worden dat ongeveer 56% van de wegen binnen woningebied (zones op gewestplan waar woonfunctie mogelijk is) en 19% buiten woningebied voorzien is van laagspanningsleidingen aan weerszijde van de weg. Afgeleid uit de tarieven die Infrax en Eandis aanrekenen bij aansluitingen van woningen op het laagspanningsnet kosten onderboringen € 55 tot 100 per meter (Eandis, 2017; Infrax, 2017) of € 330 tot 600 per aansluiting, uitgaande van een vereiste onderboring van 6 meter.
Verlichting
Schattingen van Infrax van de investeringskosten gaan in de orde van grootte van € **40.000 per kilometer**. Verschillen tussen landelijk en stedelijk gebied zijn klein. Het onderhoud bedraagt ongeveer **1% van de investeringen**. De afschrijvingstermijn van armaturen en palen is wel korter (20 jaar) dan energie bijvoorbeeld.

In een antwoord van Minister Weyts aan het Vlaams parlement wordt aangegeven dat kosten voor verlichting ongeveer € 4.000 per kilometer per jaar bedragen over een periode van 50 jaar (levensduur van een verlichtingsinstallatie). Hierin zijn volgende kosten meegenomen: initiële installatiekost, onderhoudskosten, inspectie en energiekosten, beheerskosten. De energiekost bepaalt het grootste deel van deze jaarlijkse kost, nl. 40 %. Dit cijfer ligt iets hoger dan de schattingen van infrax.

Besluit: aangepaste eenheidskosten infrastructuur

De gebruikte kengetallen zijn grotendeels gebaseerd op de kengetallen die zijn aangereikt door de stakeholders. De cijfers liggen in lijn met cijfers uit de literatuur. Specifiek werd vooral de verhouding tussen kostprijs landelijk en kostprijs stedelijk verder verfijnd op basis van feedback van de stakeholders. Dit verschil is van belang omdat met name naast een verschil in lopende meters ook een verschil in kostprijs per lopende meter tussen landelijk gebied en stedelijke kernen relevant is om mee te nemen. Dit is op een gelijkaardige wijze gebeurd in Amerikaanse scenario-studies (Burchell, 2002).

De jaarlijkse kost per lopende meter is in stedelijk gebied ongeveer 30% duurder dan in landelijk gebied.

Tabel 9: Kengetallen gebruikt voor kostenberekening lokale infrastructuur in € per lopende meter

<table>
<thead>
<tr>
<th>Kostenpost</th>
<th>Investeringskosten landelijk</th>
<th>Investeringskosten stedelijk</th>
<th>Onderhoud</th>
<th>Levensduur</th>
<th>Jaarlijkse kosten landelijk</th>
<th>Jaarlijkse kosten stedelijk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wegenis</td>
<td>1.100</td>
<td>1.100</td>
<td>2%</td>
<td>50</td>
<td>60,8</td>
<td>60,8</td>
</tr>
<tr>
<td>Riolering</td>
<td>400</td>
<td>800</td>
<td>0,75%</td>
<td>75</td>
<td>14,9</td>
<td>29,7</td>
</tr>
<tr>
<td>Waterleiding</td>
<td>95</td>
<td>190</td>
<td>0,75%</td>
<td>75</td>
<td>3,5</td>
<td>7,1</td>
</tr>
<tr>
<td>Gas **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektriciteit</td>
<td>30</td>
<td>85</td>
<td>1%</td>
<td>50</td>
<td>1,4</td>
<td>3,8</td>
</tr>
<tr>
<td>Data (kabel)</td>
<td>20</td>
<td>75</td>
<td>1%</td>
<td>50</td>
<td>0,9</td>
<td>3,4</td>
</tr>
<tr>
<td>Verlichting</td>
<td>40</td>
<td>40</td>
<td>1%</td>
<td>20</td>
<td>3,0</td>
<td>3,0</td>
</tr>
<tr>
<td>Totaal (€/m)</td>
<td>1.685</td>
<td>2.290</td>
<td>27</td>
<td>31</td>
<td>84,4</td>
<td>107,8</td>
</tr>
</tbody>
</table>

* Jaarlijkse kost = geactualiseerde jaarlijkse waarde investering in functie van levensduur en aan 2,5% discontovoet + jaarlijkse onderhoudskost

** Kosten voor gasleidingen worden niet meegenomen gezien dit niet gebiedsdekkend aanwezig is (vooral in stadskernen, dorpskernen en stadsranden) en het ook niet voorzien is om dit gebiedsdekkend uit te bouwen.
Meerkosten van sprawl op infrastructuur in Vlaanderen

Om de hoeveelheid infrastructuur te bepalen die op dit moment vereist is per gebouw of per huishouden maken we gebruik van het Wegenregister. We gaan er van uit dat het aantal lopende meter weg maatgevend is voor het aantal lopende meters infrastructuur, gezien informatie over specifieke infrastructuur (buiten riolering) niet publiek beschikbaar is. Om geen overschatting te maken van de hoeveelheid lokale infrastructuur tellen we niet-lokale weginfrastructuur zoals autosnelwegen, primaire en secundaire wegen, dienstwegen, die hoofdzakelijk gebruikt worden voor bovenlokaal transport alsook infrastructuur waar mogelijk geen nutsinfrastructuur is aangelegd zoals fietswegen en aardewegen niet mee in de berekening. Bijlage 1 geeft in detail weer welke wegtypes al dan niet worden meegeteld in onderstaande resultaten. In zijn totaliteit wordt ongeveer een derde van het aantal wegen niet meegenomen. In lopende meters gaat het vooral over aardewegen en wandel- of fietspaden. Een vergelijking tussen de hoeveelheid lopende meter weg per gebouw en de hoeveelheid bestaande en geplande meter riolering per gebouw per sprawl-type toont aan dat met name in de kerngebieden de resultaten dicht bij elkaar liggen en dat lopende meter lokale wegenis een goede benadering is voor nutsinfrastructuur. Naarmate bebouwing zich meer verspreidt is de afwijking tussen riolering en wegenis groter, vermoedelijk omdat met name in deze gebieden voor de meest afgelegen woningen geen riolering wordt aangelegd, maar eerder wordt gekozen voor individuele afvalwaterzuivering. Ook voor riolering houden we geen rekening met (bovenlokale) collectoren beheerd door Aquafin, die vooral dienen om afvalwater te transporteren van woongebieden naar zuiveringsstations. Kosten hiervoor worden vooral gedreven door de afstand tussen kernpunten en zuiveringsstations, dichtbij waterlopen gelegen in laag gelegen punten, en minder door de mate van sprawl in een gebied.

De resultaten per gebouw in onderstaande tabel geven aan dat in stadskernen ongeveer 9,2 meter lokale wegenis vereist is per gebouw, waar dit bij verspreide bebouwing meer dan 86 meter bedraagt of 9,5x zoveel lopende meters als compacte kernen. Per huishouden en per inwoner en persoon tewerkgesteld neemt deze verhouding verder toe omdat relatief gezien meer huishoudens en meer personen tewerkgesteld zijn per gebouw in vergelijking met verspreide bebouwing.

Als we dit verder doorvertalen naar jaarlijkse kosten, hanteren we de jaarlijkse kosten in stedelijk gebied zowel voor stadskern als dorpshoven en standrand en de kosten in landelijk gebied voor verkavelingen en linten en verspreide bebouwing. Gezien de kosten per lopende meter lager liggen in landelijk gebied daalt de verhouding van kosten per gebouw naar 7.
Tabel 10: Gemiddelde hoeveelheid lokale weginfrastructuur voor de verschillende sprawl-types in Vlaanderen

<table>
<thead>
<tr>
<th>Indicator per sprawl type</th>
<th>Stadskern</th>
<th>Dorpskern en stadsrand</th>
<th>Verkavelingen en linten</th>
<th>Verspreide bebouwing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lopende meters lokale weg per inwoner</td>
<td>2,8</td>
<td>6,1</td>
<td>11,1</td>
<td>38,5</td>
</tr>
<tr>
<td>Lopende meters lokale weg per huishouden</td>
<td>6,5</td>
<td>14,9</td>
<td>28,5</td>
<td>98,9</td>
</tr>
<tr>
<td>Lopende meters lokale weg per gebouw</td>
<td>9,2</td>
<td>15,6</td>
<td>26,3</td>
<td>86,2</td>
</tr>
<tr>
<td>Lopende meters lokale weg per inwoner en persoon tewerkgesteld</td>
<td>1,7</td>
<td>4,3</td>
<td>8,4</td>
<td>30,7</td>
</tr>
<tr>
<td>Verhouding lopende meter weg per gebouw t.o.v. stadskern</td>
<td>1,0</td>
<td>1,7</td>
<td>2,9</td>
<td>9,4</td>
</tr>
</tbody>
</table>

Figuur 46: Lopende meters lokale weg per gebouw voor de verschillende sprawl types

Tabel 11: Jaarlijkse kosten voor wegenis en nutsinfrastructuur per gebouw voor de verschillende sprawl types

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Stadskern</th>
<th>Dorpskern en stadsrand</th>
<th>Verkavelingen en linten</th>
<th>Verspreide bebouwing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eenmalige investering (€)</td>
<td>21.074</td>
<td>35.760</td>
<td>44.355</td>
<td>145.216</td>
</tr>
<tr>
<td>Jaarlijkse onderhoudskosten (€)</td>
<td>289</td>
<td>491</td>
<td>701</td>
<td>2.294</td>
</tr>
<tr>
<td>Totale jaarlijkse kosten (onderhoud en investeringen)</td>
<td>992</td>
<td>1.683</td>
<td>2.222</td>
<td>7.274</td>
</tr>
<tr>
<td>Verhouding t.o.v. stadskern</td>
<td>100%</td>
<td>170%</td>
<td>224%</td>
<td>733%</td>
</tr>
</tbody>
</table>
Figuur 47: Jaarlijkse kosten infrastructuur (wegenis en nutsvoorzieningen) per gebouw voor de verschillende sprawl types

Riolering

In bovenstaand overzicht gaat het vooral over bestaande infrastructuur en hebben de kosten betrekking op jaarlijks onderhoud en vervangingsinvesteringen op de langere termijn. Een uitzondering hierop is riolering. Recent werd nog aangegeven in VMM, 2018 dat voor de volledige uitbouw van het rioleringsnet conform de zoneringsplannen 9,3 miljard euro nodig zou zijn. Dit omvat de uitbouw van het gemeentelijk rioleringsnet en de aanleg van individuele zuiveringinstallaties bij veraf gelegen woningen.

Door een vergelijking te maken tussen de woningen die nog op riolering aangesloten moeten worden, de nog aan te leggen riolering en de sprawltypes die worden gehanteerd in deze studie kan bepaald worden waar deze kosten nog gemaakt moeten worden.

De bestaande rioleringsgraad toont aan dat de rioleringsgraad in stadskernen, dorpskernen en stadsranden nagenoeg 100%. Bij verkavelingen en linten daalt dit tot 77%, maar vooral bij verspreide bebouwing zakt dit verder tot gemiddeld 35% van de woningen in deze gebieden.

Met name in verkavelingen en linten en verspreide bebouwing zitten volgens AWIS, 2015 nog de grootste hoeveelheid inwoners die nog niet gerioleerd zijn. Naast geplande riolering zijn in deze doelgroepen ook nog een heel aantal individuele zuiveringinstallaties gepland. Op basis van het aantal lopende meters riolering die nog gepland is om aan te leggen in verkavelingen en linten en verspreide bebouwing (AWIS, 2015) en een zeer voorzichtig geraamde investeringskost van € 400 per lopende meter (we gaan er dan vanuit dat riolering wordt aangelegd in combinatie met andere wegenwerken, de kostprijs van afzonderlijke rioleringsprojecten ligt op dit moment ongeveer dubbel zo hoog), ramen we de vereiste investering in riolering voor deze sprawltypes op ongeveer 3,7 miljard € of ongeveer € 12.500 tot € 20.300 per gebouw afhankelijk van het sprawl-type.

Belangrijke opmerking hierbij is dat de gehanteerde eenheidskosten zoals die ook werden aangegeven door stakeholders ongeveer € 200 tot € 500 per lopende meter lager liggen dan de kosten die in VMM, 2018 worden gehanteerd, hetgeen ook verklaart waarom de totale kosten veel lager liggen dan de geraamde € 9,3 miljard.
Daarnaast zijn er nog een aantal infrastructuur-gerelateerde zaken die in voorgaande cijfers niet vervat zitten. Een kwalitatieve beschrijving hiervan wordt verder opgenomen in 4.2.6 onder de niet gekwantificeerde meerkosten.

Lange termijn trends met impact op de kosten

Watervoorziening en riolering

Vlaanderen staat voor grote uitdagingen inzake de uitbouw en renovatie van zijn leidingwaternetwerk en rioleringen en dan met name de financiering ervan. Afgaande op de
bestaande leeftijd van onze waterleidingen en riolen (asset management) kunnen we er vanuit gaan dat de komende decennia heel veel leidingen vervangen moeten worden, hetgeen bijkomende investeringen zal vergen. Dit gebeurt meestal in combinatie met wegeniswerken.

Daarnaast worden ook enorme inspanningen verwacht voor onze waterkwaliteit. Het volledig rioleren en zuiveren van al onze huishoudens zou nog ongeveer € 9,3 miljard bijkomende investeringen vergen en zelfs deze inspanning zal niet volstaan om overal de waterkwaliteitsdoelstellingen te bereiken (VMM, 2018). De extra inspanningen die vereist zijn voor het vergaand rioleren van de resterende huishoudens versus de relatief beperkte vooruitgang die dit teweeg zou brengen doet vragen rijzen over de efficiëntie van deze investeringen (Crabbé, 2017).

De Watergroep geeft aan dat op de lange termijn daarom ook veel meer beroep zal gedaan worden op decentrale oplossingen waarbij op lokale schaal hemelwater wordt gerecupereerd en afvalwater wordt gezuiverd en herbruikt (circulair watergebruik). Transporten over langere afstand worden hierdoor minder belangrijk. Echter, leveranciers van dit soort kleinschaligere oplossingen (Rietland, persoonlijke communicatie 2017) geven aan dat waterhergebruik dat verder gaat dan het bestaand hergebruik van hemelwater op dit moment enkel echt interessant wordt als het eerder op wijkniveau wordt georganiseerd dan op individueel huisniveau en waarbij idealiter ook een samenwerking met andere sectoren zoals industrie en de recreatieve sector met een andersoortige watervraag wordt opgezet. De vermeden kosten door het wegvallen of vermijden van aanleg van waterleiding stelt zich op dit moment nog altijd niet. Een demonstrator voor een dergelijke toepassing is bijvoorbeeld uitgebouwd in de Nieuwe Dokken in Gent, hetgeen verstedelijk gebied is. Decentrale watervoorziening is waarschijnlijk niet in staat de nadelen van verspreide bebouwing teniet te doen of in belangrijke mate te reduceren. Er moet nog altijd een voldoende hoge concentratie van watervraag zijn om tot economisch rendabele oplossingen te komen.
4.2.3. Transport en mobiliteit

Eenheidskosten

De meest recente kengetallen over de interne en externe kosten van transport in Vlaanderen zijn gepubliceerd in Delhaeye et al., 2017. In dit rapport worden per vervoersmodus berekend wat de interne en externe kosten zijn per voertuikilometer voor verschillende jaren t.e.m. 2016. Interne of netto private kosten zijn de totale kosten die betaald worden door degene die de verplaatsing maakt. Dit omvat de aanschafwaarde en onderhoudskost van voertuigen, kostprijs voor brandstoffen, verzekeringen, keuring, taksen, BTW en subsidies. Voor openbaar vervoer heeft dit betrekking op de kostprijs van het biljet al dan niet gecorrigeerd voor compensaties van het woonwerkverkeer. De gebruiker betaalt zelf de totale private kosten. Externe kosten zijn maatschappelijke kosten die worden veroorzaakt omwille van bv. luchtvervuiling, klimaatverandering, file, geluidshinder, ongevallen en – in het geval van vrachtwagens, spoor, binnenvaart en zeevaart – slijtage en schade aan de infrastructuur. Deze kosten worden extern genoemd omdat aan elk van die aspecten een prijskaartje hangt dat niet rechtstreeks door de veroorzaker betaald wordt, maar door de gehele samenleving. De maatschappelijke kosten zijn de som van de netto private kosten of de totale private kosten exclusief belastingen (BTW, accijnzen, invoerrechten,...) en subsidies, en de externe kosten (Rebel en Mint, 2013).

Naast de cijfers uit het rapport is bijkomende achtergrondinformatie gebruikt die aan de basis ligt van deze berekeningen. Daarnaast zijn nog bijkomende berekeningen gebeurd om het gemiddelde per vervoersmodus te berekenen (vb. personenwagen gewogen gemiddelde in functie van aantal gereden voertuikm voor benzine, diesel, elektrisch). Additioneel zijn cijfers toegevoegd voor de gezondheidsbaten van wandelen (op basis van de WHO Health Economic Assessment Tool). Ook werd specifiek gekeken naar vaste en variabele kosten per modus gezien voertuigbezit ook sterk kan verschillen in stedelijk of landelijk gebied. Tenslotte werden private uitgaven voor openbaar vervoer herrekend in functie van uitgaven voor de reiziger en werden in tegenstelling tot Delhaeye et al., 2017 kosten en subsidies ter financiering van De Lijn en de NMBS buiten beschouwing gelaten.

Tabel 12: Private en externe kosten voor personenvervoer en verschillende modi in 2014 (op basis van Delhaeye et al., 2017)

<table>
<thead>
<tr>
<th>Kosten per 100 pkm</th>
<th>te voet</th>
<th>fiets</th>
<th>moto</th>
<th>auto</th>
<th>trein(^1)</th>
<th>lijnbus(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Privaat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal privaat</td>
<td>0,00</td>
<td>12,88</td>
<td>71,15</td>
<td>20,53</td>
<td>5,49</td>
<td>4,23</td>
</tr>
<tr>
<td>belastingen/heffingen</td>
<td>0,00</td>
<td>-0,15</td>
<td>20,18</td>
<td>7,11</td>
<td>-1,44</td>
<td>-3,09</td>
</tr>
<tr>
<td>Netto</td>
<td>0,00</td>
<td>13,03</td>
<td>50,97</td>
<td>13,42</td>
<td>6,93</td>
<td>7,32</td>
</tr>
<tr>
<td>Extern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congestie</td>
<td>0,00</td>
<td>0,00</td>
<td>7,53</td>
<td>10,83</td>
<td>0,00</td>
<td>1,95</td>
</tr>
<tr>
<td>Milieu</td>
<td>0,00</td>
<td>0,00</td>
<td>3,68</td>
<td>2,88</td>
<td>0,28</td>
<td>1,32</td>
</tr>
<tr>
<td>Ongevallen</td>
<td>2,22(^1)</td>
<td>2,22</td>
<td>3,72</td>
<td>0,29</td>
<td>0,19</td>
<td>0,10</td>
</tr>
<tr>
<td>Geluid</td>
<td>0,00</td>
<td>0,00</td>
<td>1,25</td>
<td>0,90</td>
<td>0,45</td>
<td>0,06</td>
</tr>
<tr>
<td>Infrastructuur</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,25</td>
<td>0,14</td>
</tr>
<tr>
<td>baten gezondheid</td>
<td>-187,67(^2)</td>
<td>-41,81</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Totaal extern</td>
<td>-185,45</td>
<td>-39,58</td>
<td>16,18</td>
<td>14,90</td>
<td>1,17</td>
<td>3,57</td>
</tr>
<tr>
<td>Maatschappelijk</td>
<td>Netto privaat + extern</td>
<td>-185,45</td>
<td>-26,55</td>
<td>67,15</td>
<td>28,32</td>
<td>8,10</td>
</tr>
</tbody>
</table>

\(^1\) Kost op basis van externe kosten ongevallen door fietsten, geen specifieke studies voor externe ongevalskosten wandelen gekend. Impact van deze schatting op het eindresultaat is beperkt.

\(^2\) WHO Health Economic Assessment Tool voor populatie van 1000 mensen in België en wandelafstand van 0,6km/dag geeft dit een jaarlijkse baat van € 411.000 of €187/100pkm.

\(^3\) Kosten trein en lijnbus op basis van kostprijs ticket en correctie voor subsidies woon-werkverkeer conform assumpties in Delhaeye et al., 2017.
Verplaatsingsgedrag

Om het verschil in verplaatsingsgedrag (aantal afgelegde kilometers per modus per huishouden per dag) te berekenen baseren we ons op het Onderzoek VerplaatsingsGedrag (OVG). Sinds 1994 wordt door de afdeling Beleid Mobiliteit en Verkeersveiligheid (departement Mobiliteit en Openbare Werken, MOW) van de Vlaamse overheid onderzoek uitgevoerd naar het verplaatsingsgedrag van Vlamingen. Dit onderzoek, het Onderzoek VerplaatsingsGedrag (OVG), analyseert een aantal mobiliteitskenmerken van gezinnen en personen en tracht het verplaatsingsgedrag van Vlamingen zo goed mogelijk in kaart te brengen. De cijfers van het OVG zijn vrij beschikbaar en kunnen dus mee opgenomen worden in de methodiek om de effecten van urban sprawl in kaart te brengen.

Bij het bestuderen van de relatie tussen mobiliteit en ruimte kan informatie over het dagelijks aantal afgelegde kilometers per persoon als afhankelijke variabele beschouwd worden, analoog aan de werkwijze gebruikt in Boussauw en Witlox, 2011. Volgens Boussauw en Witlox is ruimtelijke detailinfo over de woonplaats van de respondenten echter aangewezen voor een betere inschatting van de ruimtelijke kenmerken. Bepaalde ruimtelijke variabelen oefenen immers wel een invloed uit op de dagelijks afgelegde afstand, maar enkel wanneer deze gemeten worden in de onmiddellijke omgeving van de woonlocatie van de persoon (binnen een straal van 1 km). Het gaat hierbij om variabelen zoals woondichtheid, functionele mix en nabijheid van voorzieningen. Wanneer deze variabelen op een hoger ruimtelijk schaalniveau worden geaggregeerd blijkt de invloed in de meeste gevallen niet langer significant te zijn. Naar aanleiding van de conclusies uit deze publicatie werd besloten om in de studie naar de effecten van urban sprawl ook te werken met verplaatsingsgegevens op adresniveau. De methodiek voor deze analyse kan daarom als volgt samengevat worden.

2. **Betreffende de analyse van de verplaatsingsgegevens zijn volgende aspecten relevant:**
 a. de dagelijks afgelegde afstanden uit OVG werden samengevat per persoon per dag. Voertuigbezit per huishouden werd ook geanalyseerd.
 b. voor de opsplitsing per motief werd rekening gehouden met het hoofdvervoersmiddel van elke verplaatsing (het vervoersmiddel waarmee de grootste afstand werd afgelegd).
 c. analoog als in de aanpak van OVG werden verplaatsingen met een afstand van meer dan 1000 km niet meegenomen in de analyse.
 d. Gemiddeld over alle respondenten werd er 36 km afgelegd per persoon per dag. Kijken we enkel naar de participanten (i.e. de personen die zich ook effectief verplaatsten, +/- 80% van de respondenten), dan bedraagt deze verplaatsingsafstand gemiddeld 46 km per persoon per dag.

3. **Betreffende de ruimtelijke analyse werden volgende stappen uitgevoerd:**
 a. Een analyse van de OVG data op adresniveau bleek het meest aangewezen om de relatie met de omgeving inzichtelijk te maken. Gezien dergelijke detailinfo standaard niet geleverd werd in de OVG rapporten, werd hiervoor een aparte aanvraag gedaan bij het departement MOW.
 c. Op basis van de geografische locatie van het thuisadres van de respondenten werd een link gemaakt met de ruimtelijke kenmerken van deze locatie (sprawl typologie).
Dergelijke ruimtelijke analyses werden uitgevoerd binnen een geografische databank structuur (PostGIS).

4. Door de ruimtelijke informatie van het thuisadres te combineren met de gerapporteerde verplaatsingsafstanden werd de impact van de ruimtelijke variabelen op voertuigbezit en verplaatsingen bepaald. Resultaten worden gerapporteerd per inwoner.

Figuur 51: Overzicht van de woonlocaties van de OVG respondenten in Vlaanderen.
Meerkosten van sprawl op mobiliteit in Vlaanderen

Onderstaande figuur geeft aan welke hoofdmodus gemiddeld gebruikt wordt per trip in de verschillende sprawl-klassen. In stadskernen gebeuren nog 49% van de trips met de auto. In verspreide bebouwing loopt dit op tot 77%. Omgekeerd gebeurt in een stads kern 26% van de trips te voet, terwijl dit in verspreide bebouwing slechts 5% bedraagt. Ook het openbaar vervoer (trein en bus) wordt het meest gehanteerd in de stads kernen met 10% van alle trips in vergelijking met 4% van alle trips in de andere sprawl types.

Figuur 52: Gemiddeld aandeel van hoofdmodus per trip per type van urban sprawl

Figuur 53 toont het gemiddelde aantal voertuigkilometers per OVG participant, uitgesplitst per type van urban sprawl en per modus. Hieruit blijkt dat gemiddeld gezien de verste verplaatsingen worden gemaakt voor inwoners in de verspreide bebouwing (gemiddeld 44 km per persoon per dag), verkavelingen en linten (42 km). Voor inwoners van de stadskernen is deze verplaatsing het laagst (gemiddeld 30 km per persoon per dag). Bovendien gebeurt de verplaatsing voor inwoners in verspreide bebouwing, verkavelingen en linten meer via de auto dan vergeleken met de inwoners van de compacte kernen.

Figuur 53: Gemiddeld aantal kilometers per participant per dag, woonachtig in de types van urban sprawl
Figuur 54: Reistijd met de auto in uren per week per persoon, woonachtig in de types van urban sprawl

Een belangrijke driver van verplaatsingen en de selectie van de modus is autobezit. Het autobezit per huishouden ligt in een stads kern (gemiddeld 1 auto per huishouden) merkabelijk lager dan in linten, verkavelingen en verspreide bebouwing (gemiddeld 1,5 auto’s per huishouden).

Figuur 55: Gemiddeld autobezit per huishouden voor de verschillende sprawltypes in Vlaanderen

Een andere driver van verplaatsingen is nabijheid van openbaar vervoer en voorzieningen. De indicator voor ontwikkelingskansen is een goede basis om dit te toetsen (Verachtert et al., 2016). De indicator houdt rekening met: (1) de knooppuntwaarde op vlak van openbaar vervoer van locaties (2) en het aanbod en de nabijheid van voorzieningen in de locaties. Het feit dat een bepaalde locatie sterk/zwak scoort op vlak van knooppuntwaarde en sterk/zwak op vlak van nabijheid aan voorzieningen, bepaalt de ontwikkelingskansen voor wonen, werken en voorzieningen die aan die locatie kunnen gekoppeld worden. Dit wordt gevat in een klasse van A (hoogste ontwikkelingskansen) tot D (laagste ontwikkelingskansen). Resultaten tonen aan dat de woonlocaties van de OVG-respondenten gelegen in de stads kern inderdaad voor een overgroot deel bestaan uit A-gebied terwijl verspreide bebouwing hoofdzakelijk uit D-gebied bestaat. Dorpskernen en stadsranden bestaan nog altijd voor de helft uit A-gebied.
Figuur 56: Aandeel van de woonlocaties van de OVG-respondenten per sprawl-type in Vlaanderen in functie van ontwikkelingskansen of de knooppuntnaamde openbaar vervoer en nabijheid van voorzieningen

Op basis van bovenstaande verplaatsingsdata met de eenheidskosten per modus zoals die zijn opgesteld in Tabel 12 kan de gemiddelde interne of private en maatschappelijke transportkost per persoon per dag (Tabel 13) en per huishouden per jaar berekend worden (Tabel 14). De totale maatschappelijke transportkost varieert tussen € 4,5 per persoon per dag in stadskernen en € 8,6 per persoon per dag in verspreide bebouwing. Per huishouden per jaar betekent een verschil tot ongeveer € 4.200 per huishouden per jaar waarvan € 1.900 externe kosten bedragen.

Tabel 13: Gemiddelde transportkost in € per persoon per dag voor verschillende sprawl-types in Vlaanderen

<table>
<thead>
<tr>
<th>Gemiddelde transportkost in € per persoon per dag</th>
<th>Stadskern</th>
<th>Dorpskern en stadsrand</th>
<th>Verkavelingen en linten</th>
<th>Verspreide bebouwing</th>
</tr>
</thead>
<tbody>
<tr>
<td>private/interne transportkost</td>
<td>5,03</td>
<td>6,47</td>
<td>7,71</td>
<td>8,15</td>
</tr>
<tr>
<td>externe kost</td>
<td>0,97</td>
<td>2,26</td>
<td>2,57</td>
<td>2,88</td>
</tr>
<tr>
<td>maatschappelijke kost *</td>
<td>4,57</td>
<td>6,79</td>
<td>7,96</td>
<td>8,60</td>
</tr>
<tr>
<td>* maatschappelijke kost = netto private transportkost (totale private transportkost excl. subsidies/belastingen) + externe transportkost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 14: Gemiddelde transportkost in € per huishouden per jaar voor verschillende sprawl-types in Vlaanderen

<table>
<thead>
<tr>
<th>Gemiddelde transportkost in € per huishouden per jaar</th>
<th>Stadskern</th>
<th>Dorpskern en stadsrand</th>
<th>Verkavelingen en linten</th>
<th>Verspreide bebouwing</th>
</tr>
</thead>
<tbody>
<tr>
<td>private/interne transportkost</td>
<td>4.273</td>
<td>5.765</td>
<td>7.232</td>
<td>7.654</td>
</tr>
<tr>
<td>externe kost</td>
<td>821</td>
<td>2.014</td>
<td>2.409</td>
<td>2.702</td>
</tr>
<tr>
<td>maatschappelijke kost *</td>
<td>3.888</td>
<td>6.049</td>
<td>7.472</td>
<td>8.079</td>
</tr>
<tr>
<td>* maatschappelijke kost = netto private transportkost (totale private transportkost excl. subsidies/belastingen) + externe transportkost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.2.4. Verlies van open ruimte en ecosysteemdiensten

Databronnen en methodes
De waardering van het verlies aan open ruimte is gebaseerd op resultaten van het IWT-SBO project ECOPLAN (www.ecosysteemdiensten.be). In dit project is op gedetailleerde schaal (5x5m) berekend wat de waarde is van de ecosysteemdiensten die de bestaande ecosystemen in Vlaanderen leveren. Ecosysteemdiensten zijn de diensten die ecosystemen leveren ten voordele van de mens. We geven hier kort weer welke diensten zijn meegenomen in de waardering en hoe ze gewaardeerd zijn. De resultaten zijn gemiddelde kengetallen per type landschap in Vlaanderen. We focussen hierbij op kengetallen voor landbouw-landschappen, omdat we er vanuit gaan dat vooral landbouwgrond (akkers en graslanden) zal verdwijnen ten voordele van bebouwing. De gemiddelde waarde van natuurgebied zit in dezelfde orde-grootte maar de ruimtelijke variatie is hier veel groter. Zo zal natuur in de nabijheid van stedelijk gebied een hogere waarde hebben per hectare (meer vraag naar diensten) dan grote, meer afgelegen natuurgebieden.

De volgende diensten komen hierbij aan bod:

- **Voedselproductie**: De productie van landbouwproducten heeft betrekking op de landbouwteelt die binnen een gebied geoogst worden. De baat is de toegevoegde waarde van de producten die op deze percelen worden geproduceerd. De toegevoegde waarde (€) van de actuele landbouwactiviteiten hangt af van de teelt, de bodemgeschiktheid en opbrengstpercentielen. De bodemgeschiktheid hangt samen met bodemkenmerken zoals profiel, drainageklasse en textuur. De berekening van de bodemgeschiktheid voor de teelt is gebaseerd op NARA-T (Van Gossum et al., 2014). De monetaire waardering van de dienst, is gebaseerd op de methode afkomstig uit de Natuurwaardeverkenner (Liekens et al. 2013).

- **Houtoogst**: Zowel natuurlijke als aangeplante bossen worden gebruikt voor houtproductie. De beschikbaarheid van hout als hernieuwbare natuurlijke hulpbron is belangrijk voor een aantal toepassingen: als constructiemateriaal in de bouwsector, in de vorm van een massief product of in verwerkte vorm (bijv. platen), voor verpakkingen en voor de productie van ramen, deuren, en meubelen; als basisgrondstof voor papier; als hernieuwbare isolatiemateriaal; en als hernieuwbare bron van energie. Gezien we vooral de waarde van grasland en akkerbouw bekijken, komt houtoogst niet aan bod. Desondanks is dit wel een mogelijke verlies aan meerwaarde bij een verlies van open ruimte. Houtoogst hangt af van bodembedekking (houtsoort), bodemgeschiktheid (bodemtextuur, -drainage en –profielgegevens) en de wijze van beheer. De waarde is gebaseerd op de marktprijs op stam (Liekens et al., 2013).

- **Watervoorziening**: Ecosystemen kunnen bijdragen aan de productie van water, doordat ze water vasthouden, ze ervoor zorgen dat water kan draineren zodat het grondwaterbronnen kan aanvullen en ze de kwaliteit van water kunnen verbeteren. Dit water kan gebruikt worden voor drinkwatervoorziening en private waterwinning door industrie (proces- en koelwater) en landbouw (irrigatie). De resultaten zijn afhankelijk van hoeveel water (m³/ha * jaar) er jaarlijks onttrokken wordt in de omgeving en anderzijds de hoeveelheid infiltratie. De infiltratie wordt berekend door rekening te houden met bodemverdichting, interceptie en het maximaal infiltratiepotentieel volgens bodem en bodemhydrologie. De waardering is gebaseerd op het gemiddelde van de minimum en maximum waarde in Broekx et al., 2013. Deze zijn enerzijds gebaseerd op de meerkost die drinkwatermaatschappijen betalen als ze zelf minder grondwater kunnen winnen en meer water moeten inkopen bijvoorbeeld vanuit Wallonië en anderzijds op de heffingen op grondwaterwinning, die kunnen beschouwd worden als een vergoeding van de milieu- en hulpbronkosten zoals geformuleerd binnen de kaderrichtlijn water.
Koolstofopslag biomassa: Planten nemen koolstof op uit het milieu en gebruiken die om biomassa op te bouwen. De koolstof wordt daardoor (tijdelijk) uit het milieu verwijderd. Alle natuurtypen nemen koolstof op, maar vooral bossen met een grote, langlevende biomassa zijn belangrijk voor de opname. Bij de andere natuurtypen is die opname van koolstof van meer tijdelijke aard, omdat de koolstof opnieuw in het milieu terechtkomt wanneer de planten vergaan. De koolstof die vastgelegd wordt in de biomassa van bossen kan niet meer bijdragen tot de opwarming van ons klimaat. Op basis van bodemtextuur, -drainage en profiel wordt de geschiktheid van de bodem voor de verschillende boomsoorten bepaald. De gemiddelde, jaarlijkse koolstofsequestratie wordt berekend aan de hand van de gemiddelde, jaarlijkse aanwas zonder dunning van de verschillende boomsoorten, de densiteitsfactor en de biomassa-expansiefactoren van de verschillende boomsoorten. De waardering van koolstof is net als voorgaande dienst gebaseerd op Liekens et al., 2013.

Luchtkwaliteit (afvang fijn stof door planten): Vegetatie filtert verschillende verontreinigende componenten uit de lucht. Zwevend fijn stof komt in contact met bladeren en takken, slaat daar op neer en zal vervolgens door de regen afspoelen naar de bodem. De bladeren kunnen via de huidmondjes gasvormige pollu renten zoals ozon en stikstofoxiden opnemen. Een waslaagje (de cuticula) op de bladeren kan door middel van adsorptie vluchtige componenten, zoals PCB’s en dioxinen, opnemen. Ammoniak (NH₃) wordt in de vorm van ammonium (NH₄⁺) afgezet op de bladeren, spoelt daar bij regen af en wordt in de bodem omgezet tot salpeterzuur, waardoor de bodem verzuurt. We beperken ons tot de afvang van fijn stof omdat deze pollutant verantwoordelijk is voor ongeveer 60 % van de totale ziektebelast die veroorzaakt wordt door milieuverontreiniging (gemeten in termen van verloren gezonde levensjaren) en omdat over de andere pollutanten weinig informatie beschikbaar is. De afvang van fijn stof wordt berekend op basis van de PM10 concentraties die aanwezig zijn in Vlaanderen en de depositiesnelheid van PM10 op de verschillende vegetatietypes. De waardering van PM10 is gebaseerd op Liekens et al., 2013 en vertrekt van de berekening van vermeden gezondheidskosten door vermindering blootstelling.

Geluidsreductie: Een geluidsscherm plaatsen tussen het verkeer en de bewoning is een veel voorkomende maatregel om hinder te voorkomen. Natuurlijke vegetatiestructuren kunnen ook als buffer fungeren. Vooral bossen spelen hierbij een rol. Daarom dat we in de natuurwaardeverkenner specifiek op bossen langs drukke verkeerswegen hebben gefocust. Afhankelijk van de hardheid en compactheid van de bodem, kan ook de bodem geluid absorberen in verschillende mate. Dit is vereenvoudigd meegenomen in de waardering. Vegetatie kan effectief geluidsniveaus beperken, maar kan daarnaast ook een positief psychologisch effect hebben. Geluidsreductie is enkel berekend voor de drukke verbindingswegen (spoor- en wegverkeer), waarvoor geluidsschermkaarten beschikbaar zijn bij LNE. Binnen deze contourkaarten wordt in een eerste stap de locatie van de verschillende huizen vastgelegd en de zone tussen elk huis en de weg of spoor berekend. In een 2de fase wordt dan het effect van groen tussen deze zone geëvalueerd. De berekening is gebaseerd op de methode die gebruikt wordt in Natuurwaardeverkenner (Liekens et al. 2013).

Recreatie: Eén van de belangrijkste diensten van groene open ruimte is recreatie en toerisme. We beschouwen hier de bezoeken van maximaal één dag als recreatie en de bezoeken met minstens één verblijf als toerisme. De berekening betreft verschillende vormen van recreatie en toerisme. Het omvat naast specifieke natuurgerechte activiteiten (vogelkijken, natuurstudie, ...) ook de zogenaamde zachte, informele recreatie (wandelen en fiet sen) en specifieke activiteiten zoals spelen, lopen, mountainbiken, zwemmen, varen, jagen en vissen. De methode opgenomen in het model is een vereenvoudiging van de methodiek die ontwikkeld werd in De Nocker et al. 2016). In deze methode worden
drie types van recreatie (= wandelen, fietsen en recreatie met voortransport) berekend binnen Vlaanderen en wordt het aantal bezoekers toegewezen aan de verschillende groen- en landbouwgebieden. Hierbij wordt rekening gehouden met de aantrekkelijkheid van het landschap en de grootte van de groengebieden binnen het gebied en rondom (aanbod) als ook het aantal potentiële recreanten in de omgeving (vraag). De waardering is gebaseerd op het gemiddelde van minimum en maximum waardes in Liekens et al., 2013 die uitgaat van bestedingen door recreanten en reiskosten als maat voor betalingsbereidheid om een gebied te bezoeken.

- Meerwaarde woningen door zicht op groen: Woningen in de nabijheid van groene ruimte (natuur, bos en landbouwgebied) hebben een meerwaarde door het uitzicht op het gebied (visueel genot) en de nabijheid van deze gebieden voor recreatie. Het effect op de woningprijzen vindt men terug tot op één km (sommige literatuur duidt zelfs op verdere afstanden). Nabijheid van recreatie is al meegenomen bij de bovenstaande schattingen voor recreatie, zowel betreffende aantallen bezoekers als hun waardering. Om dubbeltellingen te vermijden beperken we ons daarom tot het visuele genot. De omvang hiervan is gebaseerd op studies waarby een verband is gevonden tussen de waarde van woningen met zicht op groene ruimte in vergelijking met woningen met zicht op versteende ruimte (hedonische prijzenmethode). De eigen tuin wordt niet meegerekend bij deze baat. De methode om dit te bereiken kijkt naar het percentage groen rond woningen en de impact die dit heeft op de vastgoedwaarde van de woning (Broekx et al., 2013).

Eenheidskosten verlies ecosysteemdiensten door verlies aan open ruimte

De resultaten in onderstaande tabel geven het gemiddelde voor alle akker- en graslanden in Vlaanderen. De resultaten zijn ook een gemiddelde schatting en hier zit een vrij grote onzekerheid op. De totale waarde kan toegespast worden indien bestaand landbouwgebied verhard wordt. Onverhard gebied in stedelijke kernen kunnen ook heel wat ecosysteemdiensten genereren en we mogen er dus niet simpelweg vanuit gaan dat het aanleggen van een woonkern dit soort maatschappelijk verlies genereert. Voorzichtigheidshalve passen we de resultaten best enkel toe op de hoeveelheid verharde oppervlakte.

De dienst in akker- en grasland die het meest doorweegt is vanzelfsprekend voedselproductie. Andere diensten als recreatie, luchtkwaliteit en C-opslag in bodem zijn ook relatief belangrijk in het resultaat. Open ruimte trekt jaarlijks heel wat bezoekers aan. Vaak is dit niet beperkt tot natuurgebieden, maar is er sprake van een gemengd landschap. Hoewel de aantrekkelijkheid van landbouwgebied voor de bezoeker iets lager ligt in vergelijking met natuur, is dit toch nog een belangrijke baat. Luchtkwaliteit is ook relatief belangrijk. Deze grote waarde is niet zozeer door de grootte van het effect (de bijdrage in afvang van fijn stof door vegetatie in vergelijking met de jaarlijkse uitstoot is vrij beperkt) maar door de hoge maatschappelijke waarde die we hechten aan fijn stof omwille van de gerelateerde gezondheidseffecten.
Tabel 15: Kwantificering en waardering van ecosysteemdiensten voor akker- en graslanden (Vlaams gemiddelde, op basis van resultaten ECOPLAN-project)

<table>
<thead>
<tr>
<th>Dienst</th>
<th>Kwantificering (eenheid/ha.jaar)</th>
<th>Monetair (€/ha.jaar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grasland</td>
<td>Akker-bouw</td>
</tr>
<tr>
<td>Voedselproductie</td>
<td>1.190</td>
<td>1.202</td>
</tr>
<tr>
<td>Houtoogst</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Watervoorziening</td>
<td>204</td>
<td>210</td>
</tr>
<tr>
<td>C-opslag biomass</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Luchtkwaliteit: afvang door planten</td>
<td>6,3</td>
<td>6,2</td>
</tr>
<tr>
<td>Geluidsreductie</td>
<td>11,7</td>
<td>7,0</td>
</tr>
<tr>
<td>Meerwaarde woningen door zicht op groen</td>
<td>34,7</td>
<td>21,6</td>
</tr>
<tr>
<td>Recreatie</td>
<td>142,0</td>
<td>142,8</td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meerkosten van sprawl in Vlaanderen

Ruimtebeslag

De ruimte die is ingenomen door onze nederzettingen wordt ook gevatt door de term “ruimtebeslag”. Het gaat om de ruimte die we gebruiken voor huisvesting, industrie, handel, transportinfrastructuur, recreatie (zoals sportvelden), serres, enz. maar ook parken en tuinen.

Het ruimtebeslag ligt procentueel logischerwijze veel hoger in een stadskern dan in verspreide bebouwing. Uitgedrukt in m² per gebouw ligt het ruimtebeslag een orde-grootte van 10 hoger in verspreide bebouwing in vergelijking met een stadskern.

Tabel 16: Indicatoren ruimtebeslag voor de verschillende sprawl types

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Stads-kern</th>
<th>Dorpskern en stadsrand</th>
<th>Verkavelingen en linten</th>
<th>Verspreide bebouwing</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemiddeld % ruimtebeslag</td>
<td>96</td>
<td>88</td>
<td>57</td>
<td>27</td>
</tr>
<tr>
<td>m² ruimtebeslag per inwoner</td>
<td>162</td>
<td>452</td>
<td>896</td>
<td>2.213</td>
</tr>
<tr>
<td>m² ruimtebeslag per huishouden</td>
<td>376</td>
<td>1.102</td>
<td>2.303</td>
<td>5.694</td>
</tr>
<tr>
<td>m² ruimtebeslag per gebouw</td>
<td>533</td>
<td>1.158</td>
<td>2.128</td>
<td>4.959</td>
</tr>
<tr>
<td>m² ruimtebeslag per inwoner en tewerkgestelde</td>
<td>98</td>
<td>321</td>
<td>683</td>
<td>1.765</td>
</tr>
<tr>
<td>Verhouding ruimtebeslag per gebouw t.o.v. stadskern</td>
<td>100%</td>
<td>217%</td>
<td>399%</td>
<td>931%</td>
</tr>
</tbody>
</table>
Grootte bewoonde percelen

Ruimtebeslag omvat zowel private als publieke ruimte. Een indicator die beter het verschil in private ruimte omvat is de perceelsgrootte van bewoonde percelen (percelen met gedomesticeerden). Om vertekeningen van zeer grote percelen te vermijden geven we de mediaan groottes die iets lager liggen dan het gemiddelde. In een stadskern ligt deze mediaan grootte per perceel onder de 2 are. Dit loopt op tot meer dan 12 are in geval van verspreide bebouwing. Uitgedrukt per huishouden neemt deze verhouding verder toe omdat er relatief gezien meer huishoudens per perceel gehuisvest zijn in een stadskern in vergelijking met verspreide bebouwing.

Tabel 17: Gemiddelde grootte bewoonde percelen in de verschillen sprawl-types

<table>
<thead>
<tr>
<th>mediaan perceelsgrootte (m²)</th>
<th>Stadskern</th>
<th>Dorpskern en stadsrand</th>
<th>Verkavelingen en linten</th>
<th>Verspreide bebouwing</th>
</tr>
</thead>
<tbody>
<tr>
<td>mediaan grootte perceel in m²</td>
<td>179</td>
<td>462</td>
<td>857</td>
<td>1.221</td>
</tr>
<tr>
<td>mediaan grootte perceel per huishouden in m²</td>
<td>101</td>
<td>383</td>
<td>808</td>
<td>1.185</td>
</tr>
<tr>
<td>verhouding perceel per huishouden in vergelijking met stadskern</td>
<td>100%</td>
<td>378%</td>
<td>798%</td>
<td>1169%</td>
</tr>
</tbody>
</table>

Verharding publieke en private ruimte en verlies aan ecosysteemdiensten

Zoals eerder aangegeven passen we de resultaten best enkel toe op de hoeveelheid verharde oppervlakte. We kijken hierbij zowel naar private en publieke ruimte samen. Onderstaande tabel geeft in eerste instantie aan hoeveel verharding aanwezig is in de verschillende sprawl-types. De gemiddelde verhardingsgraad in een stadskern bedraagt 67%. Dit daalt tot 9% in geval van verspreide bebouwing. Uitgedrukt per gebouw varieert verharding van 260 m² per gebouw tot 1703 m² per gebouw of ongeveer een vervijfvoudiging. Uitgedrukt per huishouden is dit een verachtvoudiging. Als we dit verder vertalen in verlies aan ecosysteemdiensten (€/jaar) varieert het jaarlijks verlies tussen € 91 en € 418 per jaar.

Tabel 18: Verhardingsgraad (publieke en private ruimte) in m² voor verschillende sprawl-types in Vlaanderen

<table>
<thead>
<tr>
<th>Verhardingsgraad</th>
<th>Stadskern</th>
<th>Dorpskern en stadsrand</th>
<th>Verkavelingen en linten</th>
<th>Verspreide bebouwing</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemiddelde verhardingsgraad (%)</td>
<td>67</td>
<td>47</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>m² verharding per inwoner</td>
<td>112</td>
<td>240</td>
<td>384</td>
<td>760</td>
</tr>
<tr>
<td>m² verharding per huishouden</td>
<td>260</td>
<td>587</td>
<td>987</td>
<td>1956</td>
</tr>
<tr>
<td>m² verharding per gebouw</td>
<td>369</td>
<td>616</td>
<td>912</td>
<td>1703</td>
</tr>
<tr>
<td>m² verharding per inwoner en tewerkgestelde</td>
<td>68</td>
<td>171</td>
<td>293</td>
<td>606</td>
</tr>
<tr>
<td>verhouding m² verharding per gebouw tov stadskern</td>
<td>100%</td>
<td>167%</td>
<td>247%</td>
<td>462%</td>
</tr>
</tbody>
</table>
Figuur 57: Verharding per gebouw voor verschillende sprawl-types

Tabel 19: Verlies aan ecosysteemdiensten per gebouw voor verschillende sprawl-types

<table>
<thead>
<tr>
<th>Ecosysteemdiensten</th>
<th>Stadskern</th>
<th>Dorpskern en stadsrand</th>
<th>Verkavelingen en linten</th>
<th>Verspreide bebouwing</th>
</tr>
</thead>
<tbody>
<tr>
<td>m² verharding per gebouw</td>
<td>369</td>
<td>616</td>
<td>912</td>
<td>1703</td>
</tr>
<tr>
<td>verlies aan ecosysteemdiensten (€/jaar)</td>
<td>90,5</td>
<td>151,3</td>
<td>223,8</td>
<td>418,0</td>
</tr>
</tbody>
</table>

Figuur 58: Verlies aan ecosysteemdiensten per gebouw voor verschillende sprawl-types
4.2.5. Overige meerkosten
Daarnaast werden nog een heel aantal relevante meerkosten geïnventariseerd die niet met hetzelfde niveau van detail als vorige 3 thema’s becijferd kunnen worden.

Uitgaven door lokale besturen

Data
Om af te leiden of uitgaven door lokale besturen afhangen van sprawl, baseren we ons op data uit de Beleids- en Beheerscyclus (BBC). Gemeenten zijn verplicht het plannings-, registratie- en evaluatiesysteem van de Vlaamse lokale besturen te hanteren. Het beleids- en beheersinstrumentarium omvat de regels voor het meerjarenplan, het budget, de boekhouding en de jaarrekening. We baseren ons voor deze analyse op gegevens uit de jaarrekeningen van gemeentes die digitaal raadpleegbaar zijn op https://lokaalbestuur.vlaanderen.be. Meer specifiek werden gegevens over de jaarlijkse uitgaven op beleidsveldniveau voor de jaren 2014, 2015 en 2016 in detail geanalyseerd. We maken hierbij conform de data in BBC een onderscheid tussen exploitatie-uitgaven, investeringen en andere uitgaven. In totaal gaat het ongeveer over € 18 miljard gemeentelijke uitgaven per jaar. Voor de analyse wordt ingegaan op beleidsvelden met een mogelijk verband met het sprawl-gehalte van de gemeente en beleidsvelden die nog relatief belangrijk zijn (meer dan 1% van totale uitgaven). Onderstaande tabel bevat dit overzicht.

Tabel 20: Overzicht geanalyseerde beleidsvelden – percentage en grootte van totale gemeentelijke uitgaven in 2016

<table>
<thead>
<tr>
<th>Uitgave post</th>
<th>% aandeel</th>
<th>€/inwoner</th>
<th>€/huishouden</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 Algemene financiering</td>
<td>12%</td>
<td>318</td>
<td>754</td>
</tr>
<tr>
<td>010 Politieke organen</td>
<td>1%</td>
<td>34</td>
<td>82</td>
</tr>
<tr>
<td>011 Algemene diensten</td>
<td>13%</td>
<td>327</td>
<td>774</td>
</tr>
<tr>
<td>013 Administratieve dienstverlening</td>
<td>1%</td>
<td>37</td>
<td>87</td>
</tr>
<tr>
<td>02 Zich verplaatsen en mobiliteit</td>
<td>5%</td>
<td>130</td>
<td>309</td>
</tr>
<tr>
<td>030 Afval- en materialenbeheer</td>
<td>3%</td>
<td>88</td>
<td>207</td>
</tr>
<tr>
<td>031 Waterbeheer</td>
<td>1%</td>
<td>24</td>
<td>56</td>
</tr>
<tr>
<td>040 Politiediensten</td>
<td>6%</td>
<td>152</td>
<td>360</td>
</tr>
<tr>
<td>041 Brandweer</td>
<td>2%</td>
<td>57</td>
<td>136</td>
</tr>
<tr>
<td>064 Elektriciteitsvoorziening</td>
<td>0%</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>065 Gasvoorziening</td>
<td>0%</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>068 Groene ruimte</td>
<td>1%</td>
<td>36</td>
<td>86</td>
</tr>
<tr>
<td>070/3 Kunst- en cultuur</td>
<td>5%</td>
<td>132</td>
<td>312</td>
</tr>
<tr>
<td>074 Sport</td>
<td>4%</td>
<td>96</td>
<td>228</td>
</tr>
<tr>
<td>080 Basisonderwijs</td>
<td>4%</td>
<td>105</td>
<td>248</td>
</tr>
<tr>
<td>081 Secundair onderwijs</td>
<td>1%</td>
<td>24</td>
<td>57</td>
</tr>
<tr>
<td>090 Sociaal beleid</td>
<td>12%</td>
<td>316</td>
<td>748</td>
</tr>
<tr>
<td>094 Gezin en kinderen</td>
<td>4%</td>
<td>96</td>
<td>228</td>
</tr>
<tr>
<td>095 Ouderen</td>
<td>10%</td>
<td>252</td>
<td>598</td>
</tr>
<tr>
<td>098 Dienstverlening inzake volksgezondheid</td>
<td>1%</td>
<td>33</td>
<td>79</td>
</tr>
<tr>
<td>Totaal onderzochte uitgavenposten</td>
<td>87%</td>
<td>2.264</td>
<td>5.361</td>
</tr>
<tr>
<td>Totaal</td>
<td>100%</td>
<td>2.591</td>
<td>6.136</td>
</tr>
</tbody>
</table>
Belangrijke opmerking hierbij is dat er een grote overlap is met infrastructuur bij een aantal beleidsvelden zoals waterbeheer, watervoorziening, elektriciteit, gas en straatverlichting. De focus van de analyse ligt vooral op diensten zoals administratie, politie en brandweer, onderwijs en ouderen.

Op basis van correlaties tussen de uitgaven per inwoner en ruimtelijke en bevolkingskenmerken werd bekeken of er mogelijke verbanden zijn tussen sprawl en gemeentelijke uitgaven. Meer specifiek werd een niet-parametrische correlatie uitgevoerd (Spearman Rank) om te kijken of er een verband is tussen de uitgaves per inwoner en ruimtelijke kenmerken van de gemeentes. Belangrijke kanttekening hierbij is dat correlaties niets zeggen over causaliteit, maar dat er enkel gekeken wordt naar verbanden.

In het algemeen geven de resultaten aan dat er geen positief verband is tussen sprawl, inwonersdichtheid en de gemeentelijke uitgaven per inwoner per jaar. Integendeel, voor de meeste onderzochte kostenposten is het verband omgekeerd en stemt een hoger aandeel van inwoners in niet-kerngebieden en een lagere inwonersdichtheid overeen met lagere uitgaven. Kostenposten waar wel in verschillende jaren een positieve verband is tussen de gemeentelijke uitgaven per inwoner en de mate van sprawl (hoger aandeel inwoners in niet-kerngebied of lager inwoners per inwoner in kerngebied) zijn politieke uitgaven, zich verplaatsen en mobiliteit, waterbeheer, elektriciteit, gasvoorziening en afval- en materialenbeheer. De meeste van deze posten zitten reeds vervat onder infrastructuur (zie paragrafen eerder), behalve politieke organen en afval- en materialenbeheer.

Experten-feedback op de aanpak

In overleg met VVSG werd bekeken of uit een dergelijke aanpak duidelijke conclusies getrokken kunnen worden. Belangrijk is dat hierbij de nodige nuances gemaakt moeten worden over enerzijds de aard van de analyse en anderzijds of sprawl effectief een belangrijke factor is die meerkosten veroorzaakt binnen een gemeente. De resultaten bevestigen dit.

Er zijn een aantal factoren die het moeilijk maken om eenduidige conclusies te trekken uit een dergelijke analyse:

1. Indeling in gemeentes: Gemeentes zijn heel divers en bevatten vaak zowel landelijke als stedelijke delen, waardoor effecten door elkaar lopen.

2. Er zijn heel wat verstorende factoren die een belangrijke impact hebben op kostenstructuren en de nodige nuances noodzaken bij de interpretatie. Een aantal voorbeelden zijn:
 a. Aanwezigheid seveso bedrijven heeft impact op uitgaven brandweer: mate van uitrusting en kosten van uitrustingszones
 b. Grensgemeentes kunnen geconfronteerd worden met specifieke problemen (criminaliteit) hetgeen weegt op politie-uitgaven.
 c. Aanwezigheid van een 1ste klasse voetbalclub weegt op politie-uitgaven.
 d. Aanwezigheid van studenten / toeristen heeft een invloed op de gemeentelijke uitgaven die niet gereflecteerd wordt in de kost per inwoner.

landelijke gebieden, maar hier vervult de stad ook een bovenlokale rol. Voor brandweer werken steden vaak met beroepskorpsen terwijl in landelijk gebied vaak vrijwilligers worden ingezet. Bovendien is ook andersoortig en duurder materieel nodig dat meer inzetbaar is voor hoogbouw. Voor ouderenzorg zit er veel diversiteit in gemeentelijke uitgaven indien er gewerkt wordt met private rusthuizen of rusthuizen beheerd door het OCMW.

Afvalbeheer

Een dienst waarvoor wel in verschillende jaren positieve correlaties gevonden zijn tussen sprawl en gemeentelijke uitgaven per inwoner is afvalbeheer en dan met name ophalingen aan huis. Hoe meer ruimte tussen woningen, des te meer afstand zal afgelegd moeten worden voor ophalingen en des te groter de vermoedelijke kost.

Specifieke kostencijfers om dit aan te tonen werden opgevraagd bij diverse partijen zoals Fostplus, Ecowerf en IOK, maar werden niet aangeleverd en zijn niet op dergelijk detailniveau beschikbaar. Wel kan indirect en kwalitatief worden afgeleid dat er een verschil in kostenstructuren bestaat.

Ecowerf, verantwoordelijk voor afvalbeleid in 27 gemeentes in Oost-Brabant, gaf aan dat algemene kostendrijvers voor afvalbeheer gerelateerd zijn aan tonnen en inwoners. Daarnaast spelen heel wat correctiefactoren zoals inzamelwijze, frequentie van inzameling, afstand tot depot en losplaats, spreiding van de aansluitpunten (start/stop, lader(s) in en uit) en specifieke locatiegebonden kenmerken van het verkeersnetwerk zoals verkeersdrukte, smalle straten, winkel- en wandelstraten, éénrichtingen, toegang >3,5 ton, doodlopende straten, reliëf en aanwezigheid van scholen. Opslag en ophaling van containers is ook moeilijker in stedelijke omgeving, waar bijvoorbeeld ook meer ondergronds gewerkt wordt, hetgeen de kosten verhoogt. Ook worden in specifieke delen van steden meer problemen ervaren rond zwerfvuil en sorteren.

Fostplus, de organisatie die instaat voor de promotie, coördinatie en financiering van de selectieve inzameling, sortering en recyclage van huishoudelijk verpakkingsafval in België, rapporteert jaarlijks referentiekosten voor diverse soorten afvalinzameling. Deze referentiekosten zijn Belgische gemiddeldes van de totale kosten die de organisatie betaalt aan intercommunales of andere afval-ophalers. De organisatie maakt hierbij een onderscheid tussen gemeentes met een bevolkingsdichtheid van meer of minder dan 200 inwoners per km². Hoewel deze grens voor bevolkingsdichtheid vrij laag is en gemeentes kleiner dan 200 inwoners per km² vooral in Wallonië liggen, is dit wel een indicatie van het belang van dichtheid van inwoners en bewoning. De referentiekosten per inwoner liggen tussen 25% en 72% hoger per inwoner afhankelijk van het soort fractie. Meerkosten zijn te wijten aan extra kosten voor ophaling per ton maar ook aan de grotere hoeveelheid geselecteerd afval per inwoner voor glas en PMD.
Tabel 21: Referentiekosten FostPlus 2016 voor diverse soorten materialen

<table>
<thead>
<tr>
<th>Materiaal</th>
<th>Bevolkingsdichtheid gemeente (inw./km²)</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>€/inwoner</td>
</tr>
<tr>
<td>Glas</td>
<td>Totaal</td>
<td>1,5914</td>
</tr>
<tr>
<td></td>
<td>>200</td>
<td>1,5099</td>
</tr>
<tr>
<td></td>
<td><200</td>
<td>2,088</td>
</tr>
<tr>
<td></td>
<td><200 t.o.v. >200</td>
<td>38%</td>
</tr>
<tr>
<td>Papier-karton</td>
<td>Totaal</td>
<td>4,1845</td>
</tr>
<tr>
<td></td>
<td>>200</td>
<td>4,0699</td>
</tr>
<tr>
<td></td>
<td><200</td>
<td>5,0759</td>
</tr>
<tr>
<td></td>
<td><200 t.o.v. >200</td>
<td>25%</td>
</tr>
<tr>
<td>PMD</td>
<td>Totaal</td>
<td>3,5571</td>
</tr>
<tr>
<td></td>
<td>>200</td>
<td>3,3294</td>
</tr>
<tr>
<td></td>
<td><200</td>
<td>5,7138</td>
</tr>
<tr>
<td></td>
<td><200 t.o.v. >200</td>
<td>72%</td>
</tr>
</tbody>
</table>

Een bevestiging dat per inwoner grotere hoeveelheden geselecteerd afval worden ingezameld is te vinden in OVAM, 2015. Keerzijde is dat de hoeveelheid restafval die per inwoner wordt ingezameld in stedelijk gebied wel hoger ligt (13 tot 25% afhankelijk van de inzamelwijze). In zijn totaliteit ligt de afvalproductie ietsje lager in stedelijk als in landelijk gebied (2 tot 6% afhankelijk van de inzamelwijze) maar verschillen zijn niet groot. Belangrijke kanttekening hierbij is wel dat gemeentes ingedeeld als stedelijk ook nog een groot deel landelijk gebieden bevatten (het gaat veel breder dan centrumsteden) afgaande op het aantal stedelijke en landelijke gemeentes dat wordt toegewezen per groep.

Tabel 22: Hoeveelheid huisvuil en restafval in stedelijke en landelijke gemeentes volgens verschillende inzamelwijzes (OVAM, 2015)

<table>
<thead>
<tr>
<th>kg/inwoner/jaar</th>
<th>Aantal gemeentes</th>
<th>huisvuil</th>
<th>restafval totaal</th>
<th>geselecteerd</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFT stedelijk²</td>
<td>71</td>
<td>113,80</td>
<td>159,26</td>
<td>323,87</td>
<td>483,13</td>
</tr>
<tr>
<td>GFT landelijk²</td>
<td>127</td>
<td>86,53</td>
<td>118,87</td>
<td>375,19</td>
<td>494,06</td>
</tr>
<tr>
<td>%landelijk t.o.v. stedelijk</td>
<td>-24%</td>
<td>-25%</td>
<td>16%</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>groenregio stedelijk³</td>
<td>35</td>
<td>130,88</td>
<td>165,83</td>
<td>352,15</td>
<td>517,98</td>
</tr>
<tr>
<td>groenregio landelijk³</td>
<td>75</td>
<td>111,96</td>
<td>143,66</td>
<td>406,4</td>
<td>550,06</td>
</tr>
<tr>
<td>%landelijk t.o.v. stedelijk</td>
<td>-14%</td>
<td>-13%</td>
<td>15%</td>
<td>6%</td>
<td></td>
</tr>
</tbody>
</table>

1 restafval totaal = som van het huisvuil, grofvuil, gemeentevuil en het sorteerrresidu van het PMD
2 GFT gemeentes: gemeente in een GFT-regio verzamelt selectief het GFT-afval minstens tweewekelijks huis-aan-huis
3 Groenregio gemeentes: minstens 4x per jaar een huis-aan-huisinzameling van snoeihout gecombineerd met een inzameling van groenafval (snoeihout en fijn tuinafval) op het containerpark.
De grotere problemen en gerelateerde kosten rond zwerfvuil in stedelijke gebieden wordt bevestigd in OVAM, 2013. De kostprijs voor zwerfvuil per inwoner is het hoogst in kustgemeentes en centrumsteden. De centrumsteden blijken, met 6,7 kg per inwoner per jaar, relatief grote hoeveelheden zwerfvuil in te zamelen. Middelgrote gemeenten halen 3,6 kg per inwoner per jaar beduidend minder zwerfvuil op. Kleine en landelijke gemeenten halen met 1,9 kg per inwoner het minst op. Wat de kosten betreft liggen die in kustgemeentes met € 33,30 een factor 4 hoger dan het landelijke gemiddelde. Ook de centrumsteden hebben met € 9,70 relatief hoge kosten per inwoner. De middelgrote gemeenten hebben met € 6,10 de laagste kosten per inwoner. De verschillen zijn onder andere te verklaren door de relatief hoge inzet van manueel vegen door grote gemeenten en relatief hoge inzet van machinaal vegen door middelgrote en kleinere gemeenten.

Op basis van bovenstaande cijfers en ook cijfers in de internationale literatuur kan gesteld worden dat er onvoldoende evidentie is dat sprawl de kosten voor afvalbeheer verhoogt.

Postbedeling
De mogelijke meerkost van postbedeling wordt afgeleid uit gegevens van bpost. Bpost beschikt over heel veel gedetailleerde performantie-indicatoren per postkantoor. Data zijn volume data (hoeveelheid post, pakjes, aangetekende zending, zending zonder adres), geografische data (locatie van de bus, hoeveelheid bussen) en normen data (tijd en afstand vereist per activiteit). Specifiek aangeleverde KPIs zijn: km per stop, reistijd per stop, kostprijs per stop en dit voor verschillende type leveringen (post, pakjes). Gezien de vertrouwelijkheid van de gegevens, zijn gegevens op een geaggregeerd niveau aangeleverd (gemiddelde voor alle stedelijke, randstedelijke en landelijke gemeenten).

Kostengegevens per modus werden ook niet ter beschikking gesteld. Wel werd aangegeven dat een bromfiets en een auto over de gehele levensduur bekeken ongeveer even duur zijn (ook omwille van hogere verzekering door meer ongevallen met de bromfiets). Met de fiets is wel duidelijk goedkoper, driekwart hiervan is elektrisch op dit moment. Postrondes te voet wordt nog wel gedaan in omgeving brussel, maar elders nog heel weinig (ongeveer 700 rondes gebeuren nog te voet).

Tijd is de belangrijkste kostendrijver (personeelskost) bij het leveren van post. Het aantal kilometer heeft ook zijn kost maar is beperker in belang. De algemene vaststelling is dat de auto als vervoermiddel niet noodzakelijk duurder is in landelijk gebied als in stedelijk gebied. De afstand is korter maar de snelheid ligt lager omwille van moeilijke verkeerssituaties. Gezien het belang van pakjes leveren toenemt en het laadvermogen van fietsen beperkt is, wordt er ook steeds meer terug met de auto geleverd (ook in stedelijk gebied) en worden pakjes en brieven bij voorkeur gecombineerd. Er wordt wel geëxperimenteerd met alternatieve modi (elektrische bakfietsen) in stedelijk gebied om de kostprijs terug te drukken.

Onderstaande resultaten bevestigen dat in stedelijk gebied veel minder brievenbussen behandeld worden met de auto en veel meer met de fiets. In randstedelijke en landelijke gemeenten wordt ook meer van de bromfiets gebruik gemaakt. Tabel 23 geeft duidelijk aan dat de afstand die wordt afgelegd voor pakjes tot een derde lager is in stedelijk gebied in vergelijking met landelijk en randstedelijk gebied. Het tijdsverschil bedraagt maximaal 20%.
Figuur 59: Gebruikte modus voor verdeling post in brievenbussen door bpost in diverse types gemeenten

Tabel 23: Gemiddelde reisafstand en reistijd per pakje in stedelijke, landelijke en randstedelijke context door bpost

<table>
<thead>
<tr>
<th>Gebied</th>
<th>km/stop auto</th>
<th>Reistijd auto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stedelijk</td>
<td>0,45</td>
<td>0:01:06</td>
</tr>
<tr>
<td>Landelijk</td>
<td>0,61</td>
<td>0:01:15</td>
</tr>
<tr>
<td>Randstedelijk</td>
<td>0,67</td>
<td>0:01:26</td>
</tr>
</tbody>
</table>

Een grote trend in postbedeling is de dalende briefwisseling. Op dit moment wordt de dagelijkse levering van post in vraag gesteld in landelijk gebied. Hierdoor wordt het nadeel van landelijk gebied t.o.v. stedelijk op termijn minder erg, maar dit gaat ten koste van de kwaliteit van de dienstverlening.

4.2.6. **Niet gekwantificeerde meerkosten**

Er zijn ook nog andere meerkosten van sprawl waar we geen kwantitatieve gegevens voor Vlaanderen voor bestaan. Deze worden in dit onderdeel wel kwalitatief beschreven op basis van feedback van de stakeholders.

Kwaliteitsvol en op voldoende druk leveren van leidingwater

Een probleem van sprawl dat zowel is aangekaart door Water-link als door de Watergroep is het in stand houden van de kwaliteit van drinkwater bij verspreide bebouwing. Indien de afname op de leiding afneemt, stijgt de verblijftijd van drinkwater in leidingen waardoor kwaliteitsproblemen kunnen ontstaan. Hierdoor is meer spoeling vereist, gaat er meer water verloren en kost dit meer arbeidsuren in onderhoud. De ruimtelijke structuur zorgt ervoor dat met name bij verspreide bebouwing deze problemen zich meer voordoen. Op specifieke locaties worden standpijpen geplaatst op hydranten (standaard aangelegd om de 60m stedelijk, om de 120m landelijk) om manueel te spoelen. Maatschappijen zien deze kostprijs jaarlijks toenemen. Op dit moment is dit wel nog een relatief klein probleem binnen de gehele kostenstructuur. De Watergroep geeft specifiek aan dat het heel moeilijk is geworden om overal kwaliteitsvol drinkwater te blijven voorzien (mede ook door dalend verbruik hetgeen met name in afgelegen gebieden problemen kan veroorzaken). Dit wordt deels opgelost door kleinere diameters op eindpunten van netwerken te voorzien maar dit duurt een paar decennia voordat dit overal geïmplementeerd is.
Het op druk houden van leidingwater stelt ook bijkomende uitdagingen in landelijk gebied. Naast reliëf speelt ook de verspreiding in bebouwing een rol in de kosten. Water-link, dat vooral leidingwater aanlevert in de regio rond stad Antwerpen, heeft geen watertorens en kan rechtstreeks vanuit zijn productiecentra voldoende druk leveren over heel het net. In meer landelijk gebied zijn watertorens nodig om het water op druk te houden.

Inzake verbruik liggen de verbruiken in landelijk gebied iets lager omdat er meer mogelijkheden zijn voor recuperatie van hemelwater. Enerzijds is een lager verbruik positief en duurzaam, anderzijds stelt dit ook nieuwe uitdagingen aan watermaatschappijen. Ongeveer 80% van de kosten zijn vaste kosten die niet dalen met een dalend verbruik. De vaste kosten hangen vooral af van dimensionering en dus piekelbelasting. In het algemeen wordt vastgesteld dat de piek-dal verhouding in stedelijk gebiedt ongeveer 1,2 bedraagt, terwijl dit in landelijk gebied eerder gaat naar 1,8. Naast het bijvullen van hemelwaterputten in droge periodes spelen ook andere factoren zoals tuinen sproeien en het vullen van zwembaden hierin een rol. Deze capaciteit is wel historisch al voorzien en een korte termijn meerkost is niet te verwachten.

Planologische lasten

Planologische lasten ontstaan indien het plannen en aanleggen van bovenlokale infrastructuur (bijvoorbeeld gewestwegen, lange transportleidingen leidingwater en gas, hoogspanningsleidingen elektriciteit) omwille van aanwezige bebouwing trager en duurder wordt. Processen worden vertraagd indien er meer en duurdere onteigeningen nodig zijn (meer eigenaars en hogere compensaties) in vergelijking met landelijk gebied.

AWV geeft nog specifiek aan dat bij onteigeningen, altijd de kans bestaat dat het proces vertraging oploopt. Eén onteigening van weiland (met één eigenaar) is eenvoudiger te realiseren dan 100 voortuintjes. Dit heeft gevolgen op de inzet van personeel en de beschikbare budgetten. Een weide onteigenen is ook goedkoper dan voortuintjes of in het ergste geval rijhuizen. Vertraging kan ook veroorzaakt worden door protest op de bouwprojecten door omwonenden, wat een impact heeft op de timing van de finale oplevering. Daarnaast zorgt bebouwing ook voor extra studie- en uitvoeringskosten. Zo zijn er bv. de erftoegangen die telkens moeten worden opgemeten en apart uitgevoerd. Deze kosten komen bv. niet voor als er een nieuwe weg ingericht wordt langs een weide, waar geen toegang noodzakelijk is. AWV kan hier wel geen algemeen cijfer op plakken en dit verschilt sterk van case tot case.

Overstromingen

Sprawl heeft mogelijk ook impact op overstromingen. Bewijzen dat verspreide bebouwing meer overstromingsproblemen veroorzaakt dan verstedelijk gebied is niet evident. Enerzijds is de hoeveelheid dakoppervlakte en verharde oppervlakte per woonheiden duidelijk kleiner in verstedelijk gebied. Anderzijds zijn de mogelijkheden voor lokale buffering zoals hemelwaterrecuperatie en lokale infiltratie veel beperkter, waardoor in stedelijke kernen met grote aaneengesloten verharde oppervlaktes meer problemen ontstaan bij hevige regenval.

Een analyse van het aantal woningen per sprawlklasse in overstromingsgevoelig gebied toont aan dat ongeveer de helft van de gebouwen in overstromingsgevoelig gebied vormen zijn van verspreide bebouwing, verkavelingen en linten.
Overstromingsrisico vermijden in de Demervallei

Een illustratie van hoe verspreide bebouwing kan leiden tot bijkomende investeringen om risico’s van overstromingen te verminderen, wordt gegeven in een gevalstudie in de Demervallei (Arcadis, 2016). In deze MKBA-studie worden kosten en baten van verschillende planalternatieven vergeleken voor de herinrichting van de Demervallei tussen Diest en Werchter, waarbij de toename van de veiligheid en natuurontwikkeling moeten samengaan. De inrichtingskosten (grondwerken, kunstwerken, aanleg dienstweg) werden in deze studie telkens afgewogen tegen verschillende effecten, waarbij met name waterveiligheid door bescherming van woningen doorweegt in de baten. In het meest gunstige scenario bedragen de kosten € 38 miljoen, terwijl de baten € 70 miljoen bedragen. De helft van deze baten zijn veiligheidsbaten door het vermijden van overstromingen van gebouwen. 79% van deze gebouwen zijn verkavelingen en linten en 19% verspreide bebouwing. Kosten worden dus gemaakt om gebouwen te beschermen die buiten stads- en dorpskernen gelegen zijn.
Energie-infrastructuur

Een gelijkaardige evolutie stellen we vast in onze elektriciteitsnetten. Een toenemende implementatie van centrale energieproductie door o.a. zonnepanelen stelt nieuwe uitdagingen en vergt de implementatie van een zogenaamd smart grid, waar veel beter vraag en aanbod op elkaar afgestemd worden. Gezien transport van energie minder duur is en tot minder verlies leidt, stelt zich hier het probleem vermoedelijk wel iets minder als bij water.

Voor het oprichten van warmtenetten daarentegen is dit wel het geval. Transport van warmte is duur en geeft belangrijke verliezen, waardoor het essentieel is dat producenten en afnemers van warmte dicht bij elkaar liggen.

Extra kosten omwille van het gasnetwerk zullen zich minder stellen. Infrax geeft aan dat vermoedelijk de toekomstige uitbreidingen van dit netwerk eerder beperkt zullen zijn, gezien ook de warmtepuntproductie voor huishoudens in de toekomst vermoedelijk minder gas zal vergen (vb. door inzet van warmtepompen). Vandaar ook dat voor het gasleidingnetwerk vooral wordt ingezet op inbreiding en het realiseren van meer aansluitingen op het bestaande net.

Gevolgen van sprawl voor de energietransitie

Het beleidsplan Ruimte geeft aan dat een meer doordacht ruimtelijk beleid een transitie naar hernieuwbare energie mee kan faciliteren door ruimte-energie-efficient te organiseren (energiezuinige compacte bouwvormen), energie-uitwisseling beter te organiseren (aanleg van smart grids, warmtenetten), ruimte te voorzien voor productie van hernieuwbare energie met in volgorde van voorkeur nabijheid van productie bij consumptie, zoveel mogelijk samen te sporen met reeds bestaande infrastructuren en pas in laatste instantie open ruimte aan te snijden. Bundeling van transportinfrastructuur voor energie met bestaande infrastructuur wordt hierbij zoveel mogelijk nagestreefd.

Vertrekkende van deze principes en de vraagstelling of de bestaande ruimtelijke structuur in Vlaanderen de energietransitie bemoeilijkt, werden een aantal experten van Energyville geconsulteerd. In grote lijnen werd bevestigd dat de bestaande ruimtelijke structuur in veel gevallen de energietransitie bemoeilijkt, maar dat er een aantal belangrijke nuances hierbij gemaakt kunnen worden. We lichten de voornaamste conclusies hier toe.

Voor de productie van hernieuwbare energie zijn er een aantal voor- en nadelen aan compactere stedelijke gebieden. Door de lagere hoeveelheid dakoppervlakte per huishouden zijn er minder mogelijkheden om zonnepanelen te plaatsen. Bovendien kan beschaduwing door nabije gebouwen het rendement verminderen. Tot slot is ook het collectief organiseren van lokale productie door bijvoorbeeld verschillende bewoners van eenzelfde appartementsgebouw tot op vandaag geen eenvoudige opgave. Ook het voorzien van voldoende laadinfrastructuur (bijvoorbeeld voor elektrische voertuigen) vergt ruimte voor bijvoorbeeld batterijen en parkeerplaatsen, hetgeen uitdagingen stelt in compacte kernen en woonvormen.

Voor windenergie is sprawl op dit moment heel duidelijk een probleem, maar eerder omwille van planologische redenen. Windmolens zijn moeilijk combineerbaar met nabije bebouwing omwille van redenen zoals slagschaduw en studies tonen aan dat binnen de huidige verspreidingsgraad van bebouwing het zeer moeilijk geworden is om nog geschikte locaties te vinden voor windmolens. Dit werd ook berekend in de hernieuwbare energie-atlas (Van Esch et al., 2016).
De keuzemogelijkheden voor energiebevoorrading in landelijke omgeving worden op termijn wel kleiner gezien de afbouw van stookolieketels en het veel minder aanwezig zijn van gasdistributie. Warmtepompen worden op termijn nog de enige keuze voor verwarming van huishoudens in landelijk gebied.

Wat de distributie betreft kan gesteld worden dat er voor warmtenetten een heel duidelijk voordeel is van dichte kernen. Een voldoende hoge dichtheid is absoluut nodig om de rendabiliteit van warmtenetten te garanderen. Ruwweg kan gesteld worden dat een warmtedensiteit in Vlaanderen van 3-4 MWh per m tracé een ondergrens is, om economisch rendabel te zijn. De gemiddelde warmtevraag per huishouden afgeleid uit het gemiddeld aardgasverbruik zit op ongeveer 15 MWh/jaar. We spreken dus over minimum 1 huishouden per 5 meter warmtenet, hetgeen compacte woonvormen noodzaakt.

De sterkte (capaciteit) van de netten is ook een belangrijke factor. Netten in stadskernen zijn op dit moment nog vaak de oudste netten waar ook veel belasting op is. Om de energietransitie te realiseren is een renovatie van deze netten noodzakelijk, hetgeen een extra kostenpost is in stadskernen. De kwaliteit van de netten in de wijken errond en dorpskernen is in het algemeen beter en vergt weinig aanpassingen. Het grootste probleem van de netten situëert zich echter in het platteland waar de netten in de slechtste staat zijn en waar een verdeling van lokale hernieuwbare energieproductie moeilijk wordt en relatief duur om te realiseren.

Zowel voor steden als landelijke gebieden stelt de energietransitie dus uitdagingen. Andere organisatiemodellen en slimme inrichtingen (vb. volledige herontwikkelingen in stadsdelen, andere woonvormen in dorpskernen) zijn nodig en zullen anders zijn in functie van de context. Aandacht voor leefbaarheid in combinatie met energietransitie is hierbij ook een belangrijk randgegeven.

Verhoogd risico op ongevallen bij lintbebouwing

Hoewel bovenstaande cijfers ook kengetallen bevatten voor de externe kosten van ongevallen, wordt de mogelijke meerkost van urban sprawl op ongevallen zelf niet gevatt. Het feit dat lintbebouwing langs wegen een functie-vermenging creëert (verbindingsweg en toegang tot woonerven) waardoor mogelijk meer ongevallen ontstaan wordt niet in rekening gebracht. Dit bijkomend risico op ongevallen wordt mogelijk gecreëerd door meer start-stop verkeer door erftoegangen of door voertuigen die op hogere snelheid woningen voorbij rijden (Wouters, 2012). Bovenstaande kengetallen gaan uit van een uniforme, gemiddelde schatting en geven weer dat gemiddeld gezien er een bijkomend risico op ongevallen wordt veroorzaakt omdat er meer afstand wordt afgelegd door bijvoorbeeld sprawl. Dit is dus geen raming van de negatieve gevolgen door verkeer dat door sprawl-gebieden reist.

Toetsen of dit verhoogd risico op ongevallen zich ook daadwerkelijk voordoet, is niet eenvoudig. Het al dan niet voorkomen van ongevallen hangt met heel veel factoren samen zoals verkeersintensiteit, snelheidsregime en inrichting en verharding van de weg (de Koninck et al., 2012). De meeste ongevallen komen voor op kruispunten (de Jong et al., 2011), maar ook ruimtegebruik naast wegen speelt een rol. De Jong et al., 2011 tonen aan dat in Hasselt 15% meer ongevallen voorkomen bij wegen direct omgeven door woongebied dan bij wegen in landelijk gebied. Dit verschil is met name het grootste bij hogere snelheden (wegen met snelheidslimiet 70 en 90 km/u).
Verschil in kosten van openbaar vervoer

We gaan in bovenstaande kostenberekening uit van een uniforme eenheidskost per gereden kilometer met openbaar vervoer voor private huishoudens. De kost voor het openbaar vervoer zelf (voertuigkost en personeelskost) wordt niet in beschouwing genomen en het is logischerwijze te verwachten dat de efficiëntie van openbaar vervoer veel hoger ligt in stedelijke kernen dan in gebieden met veel verspreide bebouwing bijvoorbeeld. Contacten van De Lijn geven aan dat de kostprijs per afgelegde reizigerkilometer sterk kan verschillen. Dit hangt samen met de bezettingsgraad, de operationele voertuiggereleerde kosten (verbruik) en loonkosten. De kostprijs per voertuigkilometer zal in stedelijke omgeving vermoedelijk iets hoger zijn omwille van lagere commerciële snelheid. Per reizigerkilometer is dit dan weer anders door de hogere bezettingsgraad in stedelijk gebied. Dit werd niet in detail becijferd voor specifieke lijnen of deelgebieden. Ook wordt gewezen op de complexiteit van de vraag, gezien buslijnen vaak buitengebieden met stadskernen verbinden, waardoor het niet altijd eenvoudig is dit onderscheid te maken. De (geografische) resultaten van deze studie zouden hier in de toekomst nieuwe inzichten onderzocht worden.

Een indicatie dat er mogelijk grote efficiëntieverschillen zijn tussen stedelijk en landelijk gebied uit zich in de uitwerking van het concept basisbereikbaarheid als strategie om openbaar vervoer efficiënter te maken. Een conceptnota van de Vlaamse Regering (Vlaamse Regering, 2016) geeft aan dat er binnen dit concept meer vraaggestuurd gewerkt wordt dan aanbodgestuurd. Dit betekent dat er meer lijnen worden voorzien op plaatsen waar het echt nodig kan zijn, eerder dan overal te werken aan basis-mobiliteit. Het vervoersnet wordt hierbij ingedeeld in verschillende lagen: een kernnet, voortbouwend op het spoornet, gericht op kernsteden en aantrekkingspolen, een aanvullend net dat hierop aansluit en het vervoer op maat dat voortbouwt op lokale, al dan niet private, initiatieven. Specifieke cijfers zijn zoals aangegeven niet publiek beschikbaar.

Urban sprawl langs secundaire wegen

Bovenstaande cijfers hebben hoofdzakelijk betrekking op lokale wegenis en nutsinfrastructuur. Sprawl langs secundaire wegen is een specifieke problematiek die specifieke kosten met zich meebrengt. Bebouwing langs een drukkere gewestweg kan specifieke problemen veroorzaken op vlak van verkeersveiligheid, geluidsoverlast, luchtkwaliteit, onteigeningskosten etc. Kwantitatieve cijfers ontbreken maar her en der zijn er indicaties die wijzen op het belang.

Een van de nadelen van lintbebouwing is dat het op grote steenwegen de doorstroming van het verkeer in het gedrang kan brengen. De voortdurende afslagbewegingen en remmanoeuvres, alsook het invoegende verkeer, maken dat verkeer voortdurend moet vertragen en optrekken. Zoals reeds eerder aangegeven tonen De Jong et al., 2011 aan dat in Hasselt 15% meer ongevallen voorkomen bij wegen direct omgeven door woongebied dan bij wegen in landelijk gebied. Dit verschil is met name het grootste bij hogere snelheden (wegen met snelheidslimiet 70 en 90 km/u). Studies in het buitenland (Ewing et al., 2003) hebben een verband aangetoond tussen het aantal verkeersdoden en sprawl.

Planologische lasten kunnen heel sterk verschillen indien bebouwing langs gewestwegen aanwezig is. Stakeholders van AWV geven aan dat afhankelijk van de eigendommen die aangekocht moeten worden bij herstel, verbreding of aanleg fietspaden planologische lasten sterk kunnen verschillen. Bouwgrond is vanzelfsprekend duurder dan landbouwgrond (+/- 50x duurder, Dugernier et al., 2014) en heeft ook impact op constructiekosten (vb. rioleringen aansluiten). Daarnaast zorgt bebouwing ook voor extra studie- en uitvoeringskosten. Zo zijn er bijvoorbeeld de erftoeangen die telkens moeten worden opgemeten en apart uitgevoerd. Deze kosten komen niet voor als er een nieuwe weg ingericht wordt langs een weide, waar geen toegang noodzakelijk is.
De waarde van ecosysteemdiensten die we hanteren in deze studie is eerder als een ondergrens te beschouwen. Slechts een beperkt aantal diensten die open ruimte levert komen aan bod in deze studie door een gebrek aan betrouwbare waarderingsmethodes. Bovendien wordt naast de waarde van ecosysteemdiensten aan natuur ook een intrinsieke waarde toegeschreven. Dit is de waarde die iets heeft, los van zijn context, van zijn omgeving of zijn positie in een groter geheel. De natuur heeft een waarde op zich zonder dat het voor de mens een waarde moet hebben (Liekens et al., 2013).

Speciek werden een aantal diensten veiligheidshalve niet meegenomen in de berekeningen ondanks het beschikbaar zijn van waarderingsmethodes:

- **Koolstofopslag bodem:** De ecosysteemdienst koolstofopslag in de bodem is het gevolg van opslag van niet-geminaliseerde koolstof uit dood plantenmateriaal naar de bodem, waar het op lange termijn opgeslagen wordt. Hoe meer atmosferische CO2 op die manier wordt vastgelegd in de bodem, hoe minder deze kan bijdragen tot klimaatverwarming. De baten van deze dienst zijn enerzijds het behoud van de bestaande koolstofvoorraden en anderzijds de opslag van extra koolstof in de bodem. Belangrijke opmerking hierbij is dat bijna alle vormen van bodembewerking een negatieve invloed op de koolstofvoorraden. Hoe meer biomassa ter plaatse blijft in beheerde systemen (oogstresten, maaisel, kroonhout), hoe meer koolstof in de bodem kan worden opgeslagen. Landverstoringen zoals ploegen leiden tot een vermindering van de fysische bescherming van het organisch materiaal, waardoor het gemakkelijker mineraliseert en de koolstofopslag daalt. Daardoor zullen bodems onder natuurlijke ecosystemen grotere stocks vertonen dan intensief bewerkte bodems. Als een gebied door een infrastructuurproject ingrijpende wijzigingen ondergaat (ontbossing, drainage) of als er afgravingen plaatsvinden, kan de koolstofvoorraad in de bodem verloren gaan. De koolstofvoorraad kan proportioneel vrijkomen vanaf het moment dat de bodem afgegraven wordt. In het begin gaat het veel sneller dan na tientallen jaren. Als de bodem afgedekt wordt door bijvoorbeeld opgespoten grond of een verharding, zonder dat er graafwerken nodig zijn, dan is er vermoedelijk geen verlies van de koolstofvoorraad. Hierover is echter weinig geweten.

- **Erosieverlies:** Bescherming tegen erosie is het verhinderen van de afstroming van het oppervlak liggende grondlagen door de invloeden van wind en water en als gevolg hiervan de afzetting van sedimenten op ongewenste plaatsen (bebouwde zones, rivieren, …). Bescherming tegen erosie is een dienst die hoofdzakelijk levert door vegetatie. Planten zijn namelijk in staat via boven- en ondergrondse plantdelen de hoeveelheid erosie drastisch te verminderen. Verharding van bodem betekent dat ter plaatse de bodem vastgelegd wordt en er kan alleszins niet beweerd worden dat door verharding van landbouwgebied er erosie wordt vermeden. Anderzijds kan het wel zo zijn dat de afspoeing van erosie-materiaal over verharde bodem wordt versneld in vergelijking met bijvoorbeeld een grasland en dat dit niet meer lokaal wordt afgezet. Ook is een mogelijkhheid dat de schade door erosie vergroot (modderstromen die de aanwezige bebouwing beschadigen). Dit kan echter niet berekend worden met de beschikbare methodes in ECOPLAN.

- **Gezondheid:** Er is veel wetenschappelijke evidentie dat groene gebieden een bijdrage leveren aan het verbeteren van de fysische en mentale gezondheid van omwonenden en mensen die deze gebieden bezoeken. Hierbij zijn er verschillende mechanismen die spelen:
 - Zicht op en contact met groen hebben positieve effecten op mentale gezondheid (stress, depressie).
Nabijheid van groen stimuleert openluchtrecreatie en beweging, met directe positieve effecten op gezondheid en afgeleide positieve effecten via het verminderen van overgewicht.

Contact met groen zorgt voor een betere ontwikkeling van kinderen.

Nabijheid van groen verlaagt de kans op overgewicht en obesitas.

Daarnaast biedt groene ruimte een specifiek kader van belang voor zorgtoerisme. Een groot wetenschappelijk meerjaren programma in Nederland (Vitamine G - Maas, 2008) toont aan dat er een positief verband is tussen de hoeveelheid groenoppervlakte binnen een 1 km straal van de woning en het minder voorkomen van 18 op een totaal van 24 specifiek onderzochte ziektebeelden. Er is o.a. een positief effect gevonden op hartziektes, nek- en rugklachten, depressie, angststoornissen, infecties van de bovenste luchtwegen, astma, infectieziekten van het maagdarmkanaal, urineweginfecties en diabetes. De relatie is het grootst voor mentale ziektes.

Een positieve relatie is ook gevonden tussen de hoeveelheid groenoppervlakte binnen een 1 km straal en het verminderen van het voorkomen van verschillende ziektebeelden, zoals hartziekten, nek- en rugklachten, depressie, angststoornissen, infecties van de bovenste luchtwegen, astma, infectieziekten van het maagdarmkanaal, urineweginfecties en diabetes. De relatie is het grootst voor mentale ziektes.

4.2.7. Conclusies huidige meerkosten

Samenvattend kunnen we de voornaamste bestaande meerkosten van verspreide bebouwing versus wonen in een stadskern als volgt samenvatten:

- De jaarlijkse kostprijs van infrastructuur zoals wegenis, riolering, waterleiding en elektriciteitsvoorziening is per gebouw tot 7x hoger.
- De jaarlijkse maatschappelijke kostprijs van mobiliteit is per huishouden tot 2x hoger. De private kostprijs door huishoudens zelf wordt gedragen is tot 1,8x hoger. De externe kostprijs die door huishoudens wordt veroorzaakt op luchtkwaliteit, geluid, congestie, etc. maar niet wordt gedragen is tot 3,3x hoger.
- De totale hoeveelheid verharding in publieke en private ruimte is per gebouw tot 4,5x hoger.

Figuur 61-Figuur 64 presenteren deze bevindingen op een communicatieve manier.
Figuur 61: infographic, huidige maatschappelijke kost voor infrastructuur
Figuur 62: infographic, maatschappelijke investeringskost voor resterende rioleringsinfrastructuur
De maatschappelijke kost van mobiliteit is minstens dubbel zo groot voor huishoudens buiten de stadskern.

Figuur 63: infographic, huidige maatschappelijke kost voor mobiliteit
Figuur 64: infographic, huidige maatschappelijke kost voor open ruimte (ecosysteemdiensten)
Daarnaast werden nog een heel aantal relevante meerkosten geïnventariseerd die niet betijferd kunnen worden:

- Planologische lasten waarbij het aanleggen van bovenlokale infrastructuur veel duurder wordt door moeilijkere en duurdere onteigeningen van bewoonde percelen bij aanleg of uitbreiding van wegen, het voorzien van erftoegangen, de moeilijke zoektocht naar geschikte locaties voor bijkomende infrastructuur (vb. windmolens).
- Overstromingsbeheer: ongeveer de helft van de gebouwen in overstromingsgevoelig gebied zijn verkavelingen en linten of verspreide bebouwing. Dergelijke gebieden beschermen tegen overstromen vergt een hogere kost in verhouding tot mogelijk vermeden schade.
- De efficiëntie van openbaar vervoer hangt sterk samen met reistijden en bezettingsgraad. De bezettingsgraad neemt af naarmate er minder woningen/gebouwen nabij haltes of stations gelegen zijn.
- Het risico van verkeersongevallen neemt toe door functie-verbreding van doorgaand verkeer en toename van start-stopverkeer.
- Versnijding van leefgebieden door bijkomende infrastructuur en verbouwing heeft een negatieve impact op biodiversiteit.

Onderzochte maar niet aangetoonde meerkosten hebben vooral betrekking op publieke dienstverlening. Kosten op gemeentelijk niveau nemen niet toe voor algemene diensten, politie en brandweer, onderwijs, sport, ouderenzorg naarmate de inwonersdichtheid toeneemt. Mogelijke verklaringen hiervoor liggen in de hoge diversiteit aan sprawl binnen eenzelfde gemeente (gemeente is niet het juiste schaalniveau), de aanwezigheid van verschillende verstorende factoren als studenten, toerisme, grensgebieden, etc., het verschil in dienstverlening tussen verschillende gemeentes (lokale versus bovenlokale functies) en tot slot de relatie tussen inkomsten en uitgaven in gemeentes (naarmate inkomsten toenemen, nemen uitgaven ook toe). Bovendien worden verschillende van deze diensten reeds op bovenlokaal niveau georganiseerd.

Specifiek werd ook ingezoomd op afvalinzameling en postbedeling omdat dit twee diensten zijn waar met name afstand tot de woning een rol speelt. Duidelijk is dat voor beide diensten vooral reistijd belangrijk is als kostendriever, nog meer dan afstand, omwille van personeelskosten. Het verschil in reistijd in stedelijke versus landelijke gebieden ligt lager dan het verschil in afstand door de hogere snelheid omwille van o.a. lagere congestie. Er is mogelijk een meerkost maar de meerkost gaat minder uitgesproken zijn als voor infrastructuur bijvoorbeeld.

4.2.8. Maatschappelijke versus private meerkosten

Bovenstaande kostenijfers hebben vooral betrekking op maatschappelijke meerkosten. Wie deze kosten uiteindelijk draagt en hoe het dragen van de kosten afwijkt van het veroorzaken van de kosten komt beperkt aan bod in deze studie. In het algemeen geldt dat behoudens de private kosten voor mobiliteit de meerkosten voor sprawl niet of nauwelijks worden toegerekend aan de veroorzaker.

Kosten die gemaakt worden voor lokale wegenis en lokale dienstverlening zoals afvalbeheer worden in belangrijke mate gefinancierd door de gemeenten, en dus gesolidariseerd op het niveau van de gemeenten. Inkomsten van de gemeente zijn hoofdzakelijk afkomstig uit belastingen. De grootste bedragen komen uit de aanvullende belasting op de personenbelasting en de opcentiemen op de onroerende voorheffing. De onroerende voorheffing hangt op zijn beurt af van het kadastraal inkomen. Het kadastraal inkomen is in theorie gebaseerd op de huurwaarde van het onroerend goed, maar werd sinds de eerste schatting in 1975 niet herzien. Het kadastraal inkomen houdt behoudens de omvang van het perceel – dat maar een beperkt stuk van het Ki bepaalt - geen rekening met sprawl. Een betere schatting van het kadastraal inkomen met
mogelijke correcties voor wonen in stedelijke versus landelijke omgeving worden onderzocht (zie bijvoorbeeld www.retax.be), maar zijn tot op heden niet doorgevoerd.

Burgers uit gebieden met meer sprawl dragen enerzijds meer bij aan de maatschappelijke kosten van wegverkeer, maar betalen anderzijds ook meer aan de taksen op wegverkeer omwille van het hogere voertuigbezit en via taksen op brandstoffen. Private kosten voor mobiliteit liggen in verhouding relatief dicht bij de maatschappelijke kosten voor mobiliteit. Via taksen en subsidies worden de verschillen tussen verschillende vervoersmodi in de maatschappelijke kosten die ze veroorzaken per kilometer in belangrijke mate doorgerekend. De mate van internalisatie van externe kosten in de private kosten van personenwagens hangt sterk samen met het brandstoftype van voertuigen en of het al dan niet bedrijfswagens zijn. Delhaeye et al., 2017 geven aan dat bij personenwagens de benzinewagen met 80% zijn externe kosten het meest internaliseert. Voor de dieselwagen is dat maar 42%. Voor bedrijfswagens op diesel zakt dit verder tot 21%. Afhankelijk van het soort voertuig kan men dus stellen dat de extra kosten die sprawl veroorzaakt op mobiliteit in bepaalde mate wordt doorgerekend aan de veroorzaker. De extra kosten die sprawl mogelijk veroorzaakt op openbaar vervoer (lagere bezettingsgraden, langere verplaatsingen) worden niet doorgerekend gezien de prijzen per ticket hier geen rekening mee houden. Dit wordt eerder gesocialiseerd via de standaard prijzen voor tickets en de bijkomende financiering van openbaar vervoer vanuit de algemene middelen van de overheid. De maatschappelijke kosten van het extra wegverkeer in termen van congestie, verkeerleefbaarheid, lawaaihinder en luchtverontreiniging worden vooral gedragen door de inwoners in en nabij straten die het extra verkeer slikken, zoals invalswegen en doorgangswegen. Er is in de laatste decennia wel veel vooruitgang gemaakt om de maatschappelijke kosten van parkeren door te rekenen via betalend parkeren, en om via bewonerskaarten e.d. mogelijkheden voor parkeren voor inwoners van stedelijke gebieden te vrijwaren.

De maatschappelijke meerkosten die het verlies aan open ruimte veroorzaakt, zoals klimaat, luchtkwaliteit, verlies aan voedselproductie worden eerder gedragen door de maatschappij in zijn geheel. Financiële instrumenten in functie van de hoeveelheid verharding of het verlies aan open ruimte belasten zijn niet van toepassing in Vlaanderen. Ideeën zoals een hemelwatertaks, waarbij belastingen worden geheven in functie van de hoeveelheid hemelwater die wordt afgevoerd naar riolering of grachtenstelsels, zijn in het verleden wel al gelanceerd maar werden niet ingevoerd.

Een deel van de maatschappelijke kosten van sprawl uiten zich in een lagere kwaliteit van dienstverlening (minder goed uitgeruste wegenis, geen nutsvoorziening voor gas). Naarmate burgers meer in straten en gemeenten wonen met sprawl kenmerken, hebben zij een hogere kans om hiermee geconfronteerd te worden (bijvoorbeeld niet gestrooide weg bij vriesweer), hoewel ze hier ook aan bijdragen via de belastingen.
5. Onderdeel 3: Toekomstscenario’s

5.1. Inleiding

In het derde onderdeel worden verschillende toekomstscenario’s uitgewerkt en berekend met het RuimteModel Vlaanderen (https://ruimtemodel.vlaanderen/). Deze scenario’s laten toe om de maatschappelijke kosten te vergelijken voor infrastructuur, mobiliteit en ecosysteemdiensten – de 3 kostenposten die in Onderdeel 2 kwantitatief uitgewerkt zijn voor de huidige situatie. In de methodologie wordt beschreven hoe precies tewerk wordt gegaan.

Concreet worden er 3 alternatieve scenario’s ontwikkeld en vergeleken:

1. Het Growth-as-usual (GAU) scenario. Dit scenario gaat uit van een voortzetting van de huidige ruimte-inname. Reeds een aantal jaren stabiliseert het bijkomend ruimtebeslag per dag zich rond 6ha. in dit scenario trekken we deze groei door wat leidt tot een sterke groei in verwacht ruimtebeslag tegen 2050. Naar dit scenario kan verwezen worden als het scenario waarin de open ruimte verder wordt ingenomen.

2. Het Beleidsplan Ruimte Vlaanderen (BRV) scenario. Het BRV-scenario is een scenario gebaseerd op de strategische doelstellingen van het Beleidsplan Ruimte (verwijzingen naar strategische visie, goedgekeurd op 13 juli 2018) met als doel in 2040 de groei van het ruimtebeslag terug te brengen tot 0 ha per dag. In dit scenario wordt de inname van open ruimte teruggedrongen.

3. Het Anti-urban sprawl (AUS) scenario. Dit is een scenario afgeleid van het BRV-scenario dat als doel heeft het ruimtebeslag niet enkel terug te brengen naar 0 maar op termijn een negatief verloop te geven (verwijdering van bebouwing) waardoor ruimtebeslag afneemt op slecht gelegen locaties. Met dit scenario wordt een teruggave van open ruimte gesimuleerd.

De drie scenario’s zijn tot stand gekomen in een participatief proces met stakeholders, experten en medewerkers van het VPO. Tijdens de stuurgroepen en VRP labs die plaatsvonden gedurende de studie werden in een iteratief proces scenario’s voorgesteld, al dan niet met doorgerekende (tussentijdse) resultaten, waarna deze bijgesteld werden op basis van de feedback van de deelnemers van deze overlegmomenten.

5.2. Methodologie

5.2.1. RuimteModel Vlaanderen

Het RuimteModel Vlaanderen (https://ruimtemodel.vlaanderen/) brengt ontwikkelingen in de Vlaamse ruimte op een kwantitatieve wijze in beeld, op een resolutie van 1 ha. Het RuimteModel Vlaanderen berekent, samen met de landgebruiksveranderingen, indicatoren, die afgeleid zijn van: (1) het veranderende landgebruik, (2) ontwikkelingen in het socio-economische systeem, en, (3) extern aan het model aangeleverde informatie. Het model ondersteunt drie types van kwantitatieve analyses: (1) het simuleren van ontwikkelingen in landgebruik jaar na jaar voor een periode tot 2050, (2) het optimaal inrichten van het landgebruik op basis van een set van ruimtelijke criteria, en, (3) het analyseren van de toestand van de ruimte op basis van sets van complexe ruimtelijke indicatoren.

Het RuimteModel is een landgebruiksmodel dat gebaseerd is op cellen van 1ha. Elke cel heeft een landgebruik dat kan evolueren in de jaren van de simulatie. Het RuimteModel is eveneens activiteiten-gebaseerd, wat wil zeggen dat elke cel ook een aantal ‘activiteiten’ van verschillende
types kan bevatten: huisvesting van een aantal inwoners en tewerkstelling van verschillende sectoren.

Het model is een cellulair automata landgebruiksmodel dat de meest geschikte locatie aanduidt voor functies zoals landgebruiken en/of activiteiten. Om het GAU-scenario te simuleren wordt aan het model gevraagd om jaarlijks een significante hoeveelheid verstedelijk landgebruik bij te plaatsen om finaal in de output het ruimtebeslag met 6ha per dag te zien groeien. De dichtheid in de ha-cellen is een functie die zich aanpast aan deze opgelegde oppervlakte en het landgebruik in de buurt van een locatie.

Voor het BRV- en het AUS-scenario zijn de prognoses van bevolking en tewerkstelling zijn de belangrijkste input van het model. Hiervoor wordt beroep gedaan op de prognoses van het Federaal Planbureau voor de verwachte evolutie van de bevolking en de tewerkstelling (per sector)(Figuur 65). De simulatie wordt uitgewerkt voor Vlaanderen en Brussel samen, om de ruimtelijke randeffecten tussen beide mee te nemen. Het model hanteert een mechanisme om de vraag naar bijkomende oppervlakte van verstedelijk landgebruik te vertalen uit de verwachte groei in activiteiten op basis van locatie-specifieke dichtheden.

De gebruikte prognoses zijn uniform voor de drie scenario’s. De ruimtelijke spreiding van landgebruik en activiteiten is wel verschillend als gevolg van de specifieke randvoorwaarden die worden opgelegd in de drie scenario’s om landgebruik en activiteiten te alloceren.

Figuur 65: Prognoses voor tewerkstelling en inwoners (Federaal Planbureau)

Het Ruimtemodel alloceert toenemend landgebruik en activiteiten van de verschillende sectoren (residentieel, industrie, diensten, ...) op de meest geschikte locaties. De geschiktheid van locaties wordt bepaald door:

1. **Landgebruik in de buurt:**

 Deze houdt rekening met de relatie tussen verschillende types van activiteiten en landgebruiken. Bijvoorbeeld de woonplaatskeuze wordt beïnvloed door de nabijheid van werkgelegenheid. Een locatie met een hoge dichtheid van economische activiteit in de buurt gaat bijgevolg de attractiviteit van die locatie verhogen. Aangezien het landgebruik jaarlijks gesimuleerd wordt, verandert deze factor eveneens jaarlijks.

2. **Beleidsdoelstellingen:**
Zogenaamde ‘zoning’-kaarten worden ingesteld die een bepaalde bestemming kunnen aangeven. Deze geeft enkel de bestemde landgebruiken ‘toegang’ tot de aangewezen zones. De Ruimteboekhouding wordt hiervoor gebruikt. Aangezien deze veranderlijk is en de simulatie een lange termijnprognose is, wordt in het model ingesteld dat deze kaarten in het begin van de simulatie strenger nageleefd moeten worden dan na verloop van tijd. In het GAU-scenario is deze termijn langer dan in het BRV- en het AUS-scenario. Deze twee laatste simuleren immers een veranderend beleid waardoor deze huidige bestemmingen nog maar weinig relevant zijn reeds na enkele tijdsstappen.

3. **Bereikbaarheid:**
 De aantrekkelijkheid van locaties wordt mede bepaald door de bereikbaarheid die voor het ganse studiegebied quasi-statisch in kaart gebracht wordt aan de hand van het wegen- en openbaar vervoersnet. Met quasi-statisch wordt bedoeld dat geplande investeringen en uitbreidingen van dit net meegenomen worden vanaf een bepaald jaar (wanneer deze investeringen gepland worden om uit te voeren).

4. **(Fysische) geschiktheid:**
 Geschiedheidskaarten worden meegegeven voor elk landgebruik. In het GAU-scenario zijn dit voornamelijk fysische geschiktheidsschaarden (in functie van bodemkwaliteit bijvoorbeeld voor landbouw).

 Alle 4 voorgaande elementen worden samen verwerkt tot potentieelkaarten per sector. Hoe hoger de potentieel die voor een bepaalde sector, hoe hoger de kans dat deze sector zich zal vestigen op die plaats.

 De hoeveelheid aan activiteiten die op een bepaalde locatie geplaatst worden door het model is afhankelijk van:
 1. De totale potentieel die uit voorgaande 4 geschiktheidsfactoren voortkomt
 2. De bestaande dichtheid in en in de nabije omgeving
 3. De na te streven minimumdichtheid

 Behalve voor het GAU-scenario wordt gerichte verdichting ingevoerd. Dit betekent dat het model locaties gaat aanwijzen die goed gelegen zijn en die meer gaat verdichten dan andere locaties met een hoog potentieel. In een kaart wordt opgegeven per locatie wat de na te streven minimumdichtheid is. Dit is een dichtheid die *na te streven* is, maar de kans dat deze gehaald wordt, is afhankelijk van alle voorgaande factoren en verhoogt met de tijd.

 In het GAU-scenario worden géén minimumdichtheden opgelegd. Er wordt hier niet aan gerichte verdichting gedaan. De verdichting die plaats vindt, is in functie van alle parameters behalve de minimumdichtheden. Deze is eerder een gevolg van gevraagde hoeveelheid verstedelijkte landgebruik en de verwachte groei in activiteiten.

 Voor de andere twee scenario’s wordt gebruik gemaakt van volgende ‘steunkaarten’ om de geschikte locaties voor verdichting aan te wijzen:
 - De kernenkaart, resultaat van Onderdeel 1 – in functie van verdichting die eerder gewenst is in de (huidige) kernen dan erbuiten.
 - De synthesekaart op basis van knooppuntwaarde en voorzieningenniveau – in functie van verdichting die eerder gewenst is in de A gebieden dan in de B gebieden dan in de C gebieden dan in de D gebieden.
Figuur 66: Synthesekaart met 16 types op basis van knooppuntwaarde en voorzieningenniveau

Voor het BRV-scenario wordt gericht verdicht in de kernen én in A-gebieden. De na te streven dichtheid hier is 196 inwoners (of 86 gezinnen)\(^6\) per hectare.

Figuur 67: Gebieden geselecteerd voor gerichte verdichting in BRV-scenario: kernen en A-gebieden

Voor het AUS-scenario wordt gericht verdicht in de kernen in A/B/C-gebieden. De na te streven dichtheid in kernen van A-gebieden is hoger dan de na te streven dichtheid in het BRV, namelijk 228 inwoners (of 100 gezinnen)\(^7\), terwijl die voor kernen in B- en C-gebieden lager ligt, respectievelijk 137 (60) en 37 inwoners (16 gezinnen). Deze lagere dichtheden zijn ingevoerd met het idee dat de leefkwaliteit en de eigenheid van deze kernen gevrijwaard moeten blijven.

Figuur 68: Gebieden geselecteerd voor gerichte verdichting in AUS-scenario: kernen in A (rood), B (geel) en C-gebieden (groen).

\(^6\) Minimumdichtheden zijn geïnspireerd op resultaten van de studie Vandekerckhove et al., 2017
\(^7\) Minimumdichtheden zijn geïnspireerd op resultaten van de studie Vandekerckhove et al., 2017
5.2.2. Analyse van het voorkomen van sprawl en berekening van maatschappelijke kosten

Ruimtelijke indicatoren zijn opgenomen in het RuimteModel Vlaanderen als algoritmes die tijdens het runnen van het model de noodzakelijke bewerkingen uitvoeren om de indicator te berekenen en te verbeelden. Dit laatste wordt in deze uitvoering gebruikt om de typologie zoals deze in Onderdeel 1 uitgewerkt werd, te berekenen voor de gesimuleerde jaren. Die informatie vormt op zijn beurt dan weer de basis om de monetarisatie kencijfers zoals uitgewerkt in Onderdeel 2 toe te passen ten einde een kostenberekening te doen voor de drie scenario’s.

Het RuimteModel Vlaanderen is voor dit onderdeel uitgebreid met rekenroutines die voortvloeien uit de analyses uitgevoerd in Onderdeel 1 en Onderdeel 2. Meer bepaald betreft het:

1. De sprawl-indicatoren die uitgetest en toepasbaar zijn op 1ha resolutie uit het Onderdeel 1 van de studie;
2. De rekenroutines die voortvloeien uit de monetarisering van het Onderdeel 2.

Voorkomen van sprawl

Het RuimteModel simuleert jaarlijks landgebruik en activiteiten (bevolking en tewerkstelling) op 1ha resolutie. Vertrekende van deze resultaten en de rekenroutines zoals die in onderdeel 2 zijn beschreven wordt het ruimtebeslag en het voorkomen van de verschillende sprawltypes (stadskern, dorpskern en stadsranden, verkavelingen en linten, verspreide bebouwing, niet- of dun bebouwde ruimte) bepaald volgens dezelfde methodologie zoals die in onderdeel 1 is omschreven. Door veranderende dichtheden van activiteiten kunnen gebieden dus van sprawl-type veranderen.

Ruimtebeslag is niet rechtstreeks afleidbaar uit het landgebruik aangezien cellen van hetzelfde landgebruik wel een verschillend percentage ruimtebeslag kunnen hebben. Het ruimtebeslag wordt als indicator geproduceerd op basis van de model output. Voor 2013 en 2016 zijn er actuele ruimtebeslagkaarten beschikbaar. Ieder jaar wordt de ruimtebeslagkaart geüpdate aan de hand van de veranderingen in landgebruik en som van de activiteiten (zijnde in woners en tewerkstelling).

Monetarisering

Om de maatschappelijke kosten (of baten) te bepalen voor de verschillende scenario’s vertrekken we in belangrijke mate van de resultaten van de huidige situatie. Dit betekent dat we in functie van de hoeveelheid inwoners, het aantal woningen en de inname/creatie van open ruimte in de verschillende scenario’s berekenen wat de impact is en de baten zijn t.o.v. een growth as usual scenario.

Voor infrastructuur gaan we hierbij uit van de hoeveelheid hectare per sprawltype dat voorkomt in de verschillende scenario’s. Op basis van de bestaande hoeveelheid lokale infrastructuur die aanwezig is in de huidige situatie en gemiddelde eenheidskosten schatten we de totale jaarlijkse kosten per hectare per sprawl-type. Het verschil in jaarlijkse kosten tussen sprawl-types wordt gebruikt om eventuele meerkosten of besparingen te bepalen.

We gaan hierbij ook uit van de bestaande eenheidskosten hetgeen betekent dat hogere eenheidskosten gehanteerd worden voor stadskern, stadsrand en dorpskern in vergelijking met

8 Het ruimtebeslag is één van de ruimtelijke indicatoren die voortvloeien uit het landebruiksbestand dat VITO onderhoudt in het kader van de referentietak voor department Omgeving
9 Meer technische informatie wordt beschreven in bijlage 2
de andere sprawltypes. We gaan er a.h.w. vanuit dat meer infrastructuur nodig is en bijkomende werkzaamheden nodig zijn op de bestaande infrastructuur door de hogere belasting ervan. In geval van verdunning van activiteiten gaan we er vanuit dat bestaande infrastructuur behouden blijft omdat deze nog altijd noodzakelijk is voor de resterende activiteiten. Uitzondering hierop is het geval dat bijkomende niet bebouwde ruimte wordt gecreëerd, waarbij we er ook vanuit gaan dat naast alle activiteiten ook de infrastructuur verdwijnt en niet meer onderhouden en heraanlegd moet worden. Dit is mogelijk een overschatting omdat de infrastructuur mogelijk ook nog gebruikt wordt om gebieden te verbinden of voor andere functies (vb. bereikbaarheid van recreatiegebieden), maar deze kostenbesparing weegt relatief weinig door in het totaal resultaat. Resultaten worden vooral gedreven door het al dan niet creëren van bijkomende infrastructuur in de diverse scenario’s.

Tabel 24: Veronderstelde jaarlijkse meerkost in € per hectare voor infrastructuur bij evoluties tussen sprawl-types

<table>
<thead>
<tr>
<th>Van/Naar</th>
<th>verspreide bebouwing</th>
<th>linten en verkavelingen</th>
<th>dorpskernen stadsranden</th>
<th>stadskernen</th>
<th>niet bebouwd</th>
</tr>
</thead>
<tbody>
<tr>
<td>verspreide bebouwing</td>
<td>0</td>
<td>2.058</td>
<td>8.842</td>
<td>14.008</td>
<td>-3.913</td>
</tr>
<tr>
<td>linten en verkavelingen</td>
<td>0</td>
<td>0</td>
<td>6.784</td>
<td>11.950</td>
<td>-5.971</td>
</tr>
<tr>
<td>dorpskernen en stadsranden</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.167</td>
<td>-12.755</td>
</tr>
<tr>
<td>stadskernen</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-17.921</td>
</tr>
<tr>
<td>niet bebouwd</td>
<td>3.913</td>
<td>5.971</td>
<td>12.755</td>
<td>17.921</td>
<td>0</td>
</tr>
</tbody>
</table>

Voor mobiliteit houden we rekening met het aantal inwoners per sprawl-type en het bestaande gemiddelde verplaatsingsgedrag per inwoner per sprawl-type. De maatschappelijke kost is hierbij het totaal van de interne of private kosten, excl. belastingen en subsidies, en de externe kosten (milieu en klimaat, ongevallen, congestie, gezondheid). We gaan er dus vanuit dat ook in de toekomst inwoners zich op dezelfde manier gaan blijven verplaatsen in functie van het sprawl-type waarin ze wonen. Wel is het mogelijk dat door verdere verdichting het sprawl-type verandert waardoor ook het verplaatsingsgedrag van inwoners zich aanpast, ondanks het feit dat ze op dezelfde locatie blijven wonen. We gaan er dus vanuit dat door verdichting toegankelijkheid tot openbaar vervoer of faciliteiten verbetert, waardoor minder verplaatsingen gemaakt worden met de auto en meer te voet, met de fiets of met het openbaar vervoer.

Tabel 25: Veronderstelde jaarlijkse kosten in € per inwoner voor mobiliteit bij de verschillende sprawl-types

<table>
<thead>
<tr>
<th>Sprawl-type</th>
<th>€/inwoner per dag</th>
<th>€/inwoner per jaar</th>
</tr>
</thead>
<tbody>
<tr>
<td>stadskernen</td>
<td>4,57</td>
<td>1.669</td>
</tr>
<tr>
<td>dorpskernen en stadsranden</td>
<td>6,79</td>
<td>2.479</td>
</tr>
<tr>
<td>linten en verkavelingen</td>
<td>7,96</td>
<td>2.906</td>
</tr>
<tr>
<td>verspreide bebouwing</td>
<td>8,60</td>
<td>3.140</td>
</tr>
<tr>
<td>niet bebouwd *</td>
<td>8,60</td>
<td>3.140</td>
</tr>
</tbody>
</table>
Voor niet-bebouwde gebieden baseren we ons op de verplaatsingskosten voor verspreide bebouwing, gezien geen specifieke kengetallen hiervoor werden afgeleid door het klein aantal observaties.

Voor het verlies aan open ruimte en ecosysteemdiesten baseren we ons op de landgebruiksveranderingen zoals die in het ruimtemodel worden berekend. Eenvoudigheidshalve maken we een onderscheid tussen bebouwd gebied (residentieel, handel en diensten, industrie) en niet bebouwd gebied zijnde bos, natuur en landbouw. Voor de jaarlijkse baten baseren we ons voor landbouw op de cijfers zoals die zijn gebruikt in onderdeel 2 en zijn opgenomen in Tabel 15. Voor bos en natuur baseren we ons op berekeningen van de gemiddelde waarde per hectare voor bossen uit het ECOPLAN project. De voornaamste diensten door bossen zijn recreatie, positieve impact op luchtkwaliteit door afvang van fijn stof, C-opslag in biomassa en houtproductie. De schattingen zijn vrij voorzichtig en bevatten niet alle ecosysteemdiesten. Bovendien is de variatie in de grootte van de baten (bijvoorbeeld op vlak van recreatie) heel groot. Anderzijds is de assumptie dat een bebouwde ruimte geen ecosysteemdiesten levert een onderschatting van de mogelijke baten die binnen bebouwd gebied gerealiseerd kunnen worden door bijvoorbeeld de creatie van kleinschalige groene elementen.

In tegenstelling tot de berekening van de meerkosten in de huidige situatie passen we onderstaande cijfers toe op het landgebruik en beperken we dit niet tot de hoeveelheid m² verharde oppervlakte, gezien het Ruimtemodel landgebruik simuleert en geen verharde oppervlakte.

Tabel 26: Veronderstelde jaarlijkse bijkomende levering van ecosysteemdiesten in € per hectare bij evoluties tussen landgebruik

<table>
<thead>
<tr>
<th>van/naar</th>
<th>bos/natuur</th>
<th>landbouw</th>
<th>bebouwd</th>
</tr>
</thead>
<tbody>
<tr>
<td>bos/natuur</td>
<td>0</td>
<td>-524,5</td>
<td>-3000</td>
</tr>
<tr>
<td>landbouw</td>
<td>524,5</td>
<td>0</td>
<td>-2475,5</td>
</tr>
<tr>
<td>bebouwd</td>
<td>3000</td>
<td>2475,5</td>
<td>0</td>
</tr>
</tbody>
</table>

Additioneel wordt voor het BRV en het AUS aangenomen dat de verhardingsgraad binnen het type ‘niet/zeer dun bebouwd’ afneemt met 20% tegen 2050 – conform de strategische doelstelling ‘robuuste open ruimte’. Deze afname zorgt voor een additionele baat van deze scenario’s tov het GAU-scenario. Voor deze ontharding wordt gerekend met de eenheidskost per ha per jaar als voor landbouw.

Berekening van totale maatschappelijke kosten en baten

Om de verschillende jaarlijkse kosten en baten op te tellen tot één getal dat het maatschappelijk rendement van elk van de scenario’s uitdrukt, berekenen we de netto contante waarde. De netto contante waarde (NCW) wordt als volgt berekend (Rebel en Mint, 2013):

\[NCW = \sum_{t=0}^{T} \frac{B_t - K_t}{(1 + d)^t} \]

waarbij : \(B_t = \text{som van de projecteffecten in jaar } t \) (in vaste prijzen van jaar 0)
\(K_t = \text{projectkosten in jaar } t \) (in vaste prijzen van jaar 0)
\(d = \text{reële discontovoet} \)
\(T = \text{tijdshorizon van de analyse} \)

Alle kosten en baten over de beschouwde tijdshorizon worden opgeteld, waarbij toekomstige kosten en baten een lager gewicht krijgen naarmate ze verder in de toekomst gelegen zijn. Die
weging gebeurt door de kosten en baten die t jaren in de toekomst liggen te delen door (1+d) tot de macht t, waarbij d de discontovoet is.

We berekenen gedetailleerde kosten en baten op basis van de jaarlijkse resultaten van het Ruimtemodel voor 2025, 2035 en 2050. Resultaten voor tussenliggende jaren worden geïnterpoleerd.

In de Standaardmethodiek MKBA (Rebel en Mint, 2013) wordt een reële discontovoet van 4% per jaar voorgeschreven. Voor gevoeligheidsanalyses wordt een bandbreedte van 2,5% tot 5,5% per jaar aanbevolen. De discontovoet voorgeschreven in de Standaardmethodiek is aan actualisatie toe. In Rebel, 2018 wordt een reële discontovoet van 2,5% per jaar aanbevolen, met eventueel een bandbreedte van 1,7% tot 3,4%. We hanteren dan ook standaard 2,5% in deze studie.

Kosten en baten die in de toekomst plaatsvinden worden in een constant prijspeil (2014) gewaardeerd en mogen dus niet met inflatie verhoogd worden. Op deze regel is er één uitzondering. Stel dat er kosten of baten zijn waarvan verwacht wordt dat de prijsevolutie beduidend hoger of lager dan de algemene inflatie zal zijn. Op de prijs van deze kosten en baten wordt een veranderingspercentage toegepast dat gelijk is aan het verschil tussen de verwachte prijsevolutie en de algemene inflatie.

Conform de aanbevelingen van Rebel, 2018 hanteren we daarom een bijkomende koopkrachtgroei van 1% per jaar voor externe transportkosten (congesties en emissies) en ecosysteemdiensten, met eventueel een bandbreedte van 0,7% tot 1,2% die gecorreleerd is met de bandbreedte van de discontovoet. We hanteren geen koopkrachtgroei voor infrastructuurkosten en private transportkosten.
5.3. Resultaten

5.3.1. Ruimtelijke toekomstscenario’s voor Vlaanderen

Ruimtebeslag

Uit de ruimtebeslag-kaarten halen we de evolutie van het bijkomend ruimtebeslag per dag (Figuur 69) en de totale oppervlakte ruimtebeslag in Vlaanderen (Figuur). De evolutie van het bijkomend ruimtebeslag per dag (Figuur 69) toont zeer verschillende trends voor de 3 scenario’s. In het GAU-scenario wordt het huidige niveau van 6ha bijkomend ruimtebeslag per dag aangehouden. Dit leidt dan ook tot een gestaag groeiend percentage van Vlaanderen dat onder ruimtebeslag valt in het GAU-scenario, tot ca 38,5% in 2050 (Figuur 70). In het BRV-scenario zet het bijkomend ruimtebeslag bij begin van de simulatie een stevige daling in en wordt in 2040 herleid tot quasi 0 (Figuur 69). Het percentage ruimtebeslag stagneert daardoor tussen 2040 en 2050 ca 34% (Figuur 70). Het AUS-scenario daalt sterker en bereikt het kantelpunt van ca 0 ha ruimtebeslag per dag reeds in 2025. De trend stagneert vervolgens een aantal jaren en duikt vervolgens onder 0. In 2050 wordt verwacht dat het ruimtebeslag met ca 2ha per dag afneemt (Figuur 69). Dit is het enige scenario waarin het percentage ruimtebeslag tegen 2050 netto niet gegroeid zal zijn (Figuur 70). De stijging van dit percentage in de eerste periode wordt teniet gedaan door een daling in de tweede periode van de simulatie.

In totaal betekent dit dat we in het GAU-scenario meer dan 524.000 ha ruimtebeslag kennen in Vlaanderen in 2050. In het BRV-scenario ligt dit ongeveer 57.000 ha lager, in een AUS-scenario ligt dit ongeveer 75.000 ha lager en veronderstellen we in de laatste jaren een negatieve evolutie die ons in 2050 terug brengt op het niveau van 2016.

![Graph showing the evolution of additional land demand per day for the 3 scenarios](image-url)

Figuur 69: Evolutie van het bijkomend ruimtebeslag per dag voor de 3 scenario’s
Figuur 70: Evolutie van het totale ruimtebeslag in Vlaanderen voor de 3 scenario’s
In deze box checken we in hoeverre het BRV-scenario overeenstemt met de strategische visie voor het BRV zoals die is goedgekeurd door de Vlaamse Regering (13 juli 2018). De resultaten van het RuimteModel scenario worden vergeleken met een aantal strategische doelstellingen (SD) met ruimtelijke implicaties. Doelstellingen die gehaald worden, worden in groen aangegeven.

SD1: verminderen bijkomend ruimtebeslag Het bijkomend gemiddeld dagelijks ruimtebeslag is tegen 2040 teruggedrongen tot 0 hectare. Het verhogen van het ruimtelijk rendement in het bestaand ruimtebeslag is aantrekkelijker dan ruimtelijk uitbreiden.

Figuur 69 toont een gelijkaardig verloop van het bijkomend ruimtebeslag per dag voor het BRV-scenario als deze gespecifieerd in de eerste strategische doelstelling. Dat betekent een daling van het ruimtebeslag van 6ha/dag in 2013 naar 3ha/dag rond 2025 en quasi 0ha/dag in 2040. Dit zorgt ervoor dat de totale oppervlakte ruimtebeslag tot 2040 nog toeneemt en daarna pas stabiliseert.

Strategische doelstelling 2: Europees stedelijk-economische ruimte en energienetwerken Het versterken van de ruimtelijke ruggengraat gebeurt door bijkomende woongelegenheid en ruimte voor ondernemerschap te ontwikkelen rond aan te duiden strategische collectieve vervoersknopen binnen de ruggengraat.

Voor de ‘aan te duiden strategische collectieve vervoersknopen’ wordt als hypothese – op basis van een interne oefening bij het departement Omgeving - volgende lijst aan stations gehanteerd: Vilvoorde, Mortsel(-Oude God), Sint-Niklaas; Mechelen, Denderleeuw, Halle en Roeselare. De woon- en werk dichtheid per ha ruimtebeslag binnen 1km rondom de stations wordt berekend voor verschillende jaren. We zien dat deze stations omgeving een verdichting kennen van <10% in de cijfers hieronder. Wat bijgevolg minder is dan de vooropgestelde 50%.

<table>
<thead>
<tr>
<th>HALTENAAM</th>
<th>inwoners + tewerkstelling per ha RB 2013</th>
<th>inwoners + tewerkstelling per ha RB 2050</th>
<th>verdichting '13-'50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denderleeuw</td>
<td>37.20</td>
<td>38.10</td>
<td>2.4%</td>
</tr>
</tbody>
</table>
De woondichtheid op bewandelbare afstand rond het geheel van strategische collectieve vervoersknoopen binnen de ruimtelijke ruggengraat neemt tegen 2050 met 50% toe ten opzichte van 2015. Tegelijk zal het bedrijfoppervlak op deze locaties jaarlijks stijgen door werk te maken van gemengde ontwikkeling. Vooral locaties met een hoge knooppuntwaarde zijn dé plaats om zo veel mogelijk bijkomende economische activiteiten op te vangen. (…)

<table>
<thead>
<tr>
<th>Locatie</th>
<th>2015</th>
<th>2025</th>
<th>Verandering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antwerpen-Berchem</td>
<td>145.28</td>
<td>150.53</td>
<td>3.6%</td>
</tr>
<tr>
<td>Halle</td>
<td>66.68</td>
<td>68.00</td>
<td>2.0%</td>
</tr>
<tr>
<td>Mechelen</td>
<td>103.41</td>
<td>110.44</td>
<td>6.8%</td>
</tr>
<tr>
<td>Mortsel-Oude God</td>
<td>68.74</td>
<td>70.93</td>
<td>3.2%</td>
</tr>
<tr>
<td>Roeselare</td>
<td>73.60</td>
<td>78.20</td>
<td>6.3%</td>
</tr>
<tr>
<td>Sint-Niklaas</td>
<td>86.66</td>
<td>91.12</td>
<td>5.1%</td>
</tr>
<tr>
<td>Vilvoorde</td>
<td>78.01</td>
<td>82.75</td>
<td>6.1%</td>
</tr>
</tbody>
</table>

Wanneer we de buffer vergroten en kijken naar de verdichting die per ha-plaats vindt binnen 2km rondom de aangegdeute stations, zien we dat voor bijna alle knooppunten het grootste aandeel van de cellen een verdichting kent (oranje-rode cellen). Een kleiner aantal cellen zijn donker rood en kennen wel een verdichting >50% . Sommige van deze locaties verdichten tot de nagestreefde minimumdichtheid van 196 inwoners waardoor de verdichtingsgraad zelfs tot 200% kan oplopen (bijvoorbeeld wanneer verdicht wordt van 1 inwoner naar 196). Als we het gemiddelde nemen van de individuele verdichtingsgraad van alle cellen binnen een straal van 2km rondom de strategische knooppunten, scoren 4 van de 8 knooppunten boven 50% (Denderleeuw, Halle, Roeselare en Vilvoorde).

Dus desondanks dat deze knooppunten geen 50% totale activiteitsgroei per ruimtebeslag halen, zijn er wel heel wat individuele locaties die zeer sterk verdichten.
SD 4: Wonen en werken nabij huidige en toekomstige collectieve vervoersknoopen en voorzieningen

De woondichtheid en het bedrijfsvloeroppervlak zullen op het geheel van plaatsen met een (zeer) goede knooppuntwaarde en een (zeer) goed voorzieningenniveau (beide al dan niet in min of meerdere mate aanwezig) tegen 2050 met minstens 30% zijn gestegen ten opzichte van 2015. Dit gebeurt op maat van elk knooppunt. Er wordt naar gestreefd om tegen 2050 geen substantieel aantal bijkomende woongelegenheden en werkplekken meer te realiseren op te lange verplaatsingstijd van een collectieve vervoersknoop of groep voorzieningen, tenzij dit om plaatsen met zeer goede knooppuntwaarde en een zeer goed voorzieningenniveau wordt in Vlaanderen aangeduid als de A-gebieden van de synthesekaart van de knooppuntwaarde en voorzieningenniveau (Verachtert et al., 2016). In deze synthesekaart zijn 16 categorieën te onderscheiden waarvan 4 binnen het A-kwadrant gelegen zijn. A1 springt eruit als zijnde de categorie waar beide deelfactoren zeer goed scoren. Binnen A1 en algemeen het gehele A-kwadrant vinden we vandaag de dag al een hoge inwonerdichtheid (voor Vlaanderen), namelijk respectievelijk 67,5 en 31,5 inwoners per ha. Volgens het BRV-scenario zal 40% van de verwachte bevolkingsgroei in Vlaanderen tegen 2050 zich situeren in deze A-gebieden. Daardoor wordt de dichtheid verwacht te verhogen naar respectievelijk 69 en 34 inwoners per ha.

Het totaal aantal inwoners binnen het A-gebied wordt verwacht met 429.000 toe te nemen. Dit is een bevolkingsgroei van 13%. Deze doelstelling wordt bijgevolg in het BRV-scenario niet gehaald.

<table>
<thead>
<tr>
<th>A gebied</th>
<th>inwoners 2013</th>
<th>inwoners 2050 volgens het BRV-scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.321.999</td>
<td>3.751.000</td>
</tr>
</tbody>
</table>
| duidelijke ruimtelijke rendementsoverwegingen aangewezen is. | SD 5: Robuuste open ruimte
De verhardingsgraad in de bestemmingen landbouw, natuur en bos is tegen 2050 minstens met 1/5 teruggedrongen ten opzichte van 2015. De totale bestemde oppervlakte voor de open ruimte bestemmingen zal in 2050 ca. 72,5% van de oppervlakte van Vlaanderen bedragen.
Het RuimteModel simuleert de groei van bevolking en tewerkstelling en karteert de ruimtelijke implicaties naar landgebruik en ruimtebeslag. Het modelleren van verharding is hier geen onderdeel van. Echter, om het verlies aan open ruimte en ecosysteemdiensten te monetariseren, wordt het aantal hectaren verlies van landbouw, bos en natuur aan residentiële ontwikkelingen wel gebruikt (zie verder). Hiervoor wordt een aanname gedaan van de percentages verharding per sprawltype en landgebruik. Vandaag zien we dat meer dan 99% van de bestemde ruimte voor landbouw, natuur en bos gelegen is binnen het type ‘niet/zeer dun bebouwd’. De verhardingsgraad binnen dit type bedraagt 5%. In de monetariseringsoefening implementeren we SD5 door een daling van de verhardingsgraad binnen het type ‘niet/zeer dun bebouwd’ te veronderstellen van 20%.
Conclusie: het BRV-scenario van het RuimteModel simuleert een verdichting in goed gelegen locaties. De verwachte bevolkingsgroei die gealloceerd wordt door het model, wordt gestimuleerd om te concentreren in de A-gebieden van de synthesekaart van knooppuntwaarde en voorzieningenniveau en de kernen. Deze laatste worden meegenomen om de verwachte bevolkingsgroei buiten de A-gebieden te concentreren in de dorpskernen en niet te laten aangroeien in verspreide bebouwing en verkavelingen en linten. Maar deze input is daardoor al een afwijking ten opzichte van de strategische doelstellingen. Onder andere daardoor is het BRV-scenario niet één op één in overeenstemming met de strategische doelstellingen van het Beleidsplan Ruimte Vlaanderen. Het scenario komt voornamelijk tegemoet aan de eerste strategische doelstelling, namelijk het verminderen van het bijkomend ruimtebeslag. Maar dankzij de werking van het RuimteModel wordt een zo realistisch mogelijke groei gesimuleerd op goed gelegen plaatsen. De definitie van ‘goed gelegen plaatsen’ houdt niet alleen rekening met de toegankelijkheid via openbaar vervoer en voorzieningenniveau, maar ook met bestaande patronen van bebouwing, bereikbaarheid (via wegen), beleidsdoelstelling en fysische geschiktheid (zoals gedefinieerd in 5.2). |
Oppervlakte per sprawltype

In de monetarisering wordt gewerkt met een aantal tussentijdse jaren: 2013, 2025, 2035 en 2050. Per jaar wordt de evolutie in oppervlakte tussen de verschillende sprawltypes geanalyseerd om vervolgens in te schatten wat de bijkomende behoefte aan hoeveelheid wegenis is. Figuur 71 geeft de evolutie in oppervlakte per scenario weer aan de hand van Sankey-diagrammen.

Elk diagram toont in de uiterst linkse kolom het aantal ha per sprawl type bij start van de simulatie, in 2013. We zien bijvoorbeeld dat in 2013 het type ‘niet bebouwd’ de grootste blok inneemt (in groen). Van alle wel bebouwde types (in blauw-tinten, analoog aan de typologie-kaart) is het type ‘verspreide bebouwing’ het grootst in oppervlakte. Uiterst rechts tonen de blokken de verdeling van het aantal ha in Vlaanderen per sprawltype bij einde van de simulatie, in 2050. Als tussenstappen is de verdeling van de oppervlakte in 2025 en respectievelijk 2035 weergegeven. Per tijdstap (2013-2025; 2025-2035; 2035-2050) toont het diagram via ‘golven’ de evolutie die oppervlaktes ondergaan in die betreffende periode. De ‘golf’ wordt gekleurd in functie van het type waarin de weergegeven oppervlakte wordt verwacht om te zetten (volgens het scenario). De grootte van de ‘golven’ zijn proportioneel aan de hoeveel oppervlakte die omzet van één typologie naar een andere. Oppervlakte die doorheen de tijd bij hetzelfde type blijft, blijft in dezelfde kleur (en gaat min of meer horizontaal, die golf niet).

Over het algemeen blijven de volumes van de verschillende sprawl types relatief constant. Dit betekent dat er geen grote ‘verhuisbewegingen’ worden gesimuleerd. In het GAU-scenario leidt de grote ruimte-vraag en de verwachte verandering in enerzijds ha-cellen die niet bebouwd die aangesneden worden voor verspreide bebouwing en anderzijds locaties waar verspreide bebouwing verder aangroeit tot linten en verkavelingen (Figuur 71).

Het BRV-scenario daarentegen vertoont enkel in de eerste periode (2013-2025) nog een aansnijding van niet-bebouwde ruimte en verdichting van verspreide bebouwing, maar vertoont daarna opvallend weinig beweging in het diagram. In de laatste periode manifesteert de bevolkingsgroei zich voornamelijk in bestaande, goed gelegen locaties waardoor we de overgang naar dorpskernen en stadsranden de grootste is.

In het AUS-scenario is opnieuw in de eerste fase nog een verdichting te zien, maar deze draait om naarmate de simulatie verder gaat. In de laatste periode is het vooral een ‘terugkeer’ van ha-cellen naar niet-bebouwd die domineert.
<table>
<thead>
<tr>
<th>Onderdeel</th>
<th>2013</th>
<th>2025</th>
<th>2035</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorpskernen en stadsranden</td>
<td>2.391.091 ha</td>
<td>1.489.663 ha</td>
<td>1.581.614 ha</td>
<td>1.716.620 ha</td>
</tr>
<tr>
<td>Laten en verkavelingen</td>
<td>232.772 ha</td>
<td>252.052 ha</td>
<td>256.034 ha</td>
<td>252.621 ha</td>
</tr>
<tr>
<td>Verbouwende bebouwing</td>
<td>433.770 ha</td>
<td>424.774 ha</td>
<td>415.914 ha</td>
<td>406.868 ha</td>
</tr>
<tr>
<td>Niet bebouwd</td>
<td>567.291 ha</td>
<td>485.558 ha</td>
<td>481.482 ha</td>
<td>470.673 ha</td>
</tr>
<tr>
<td>Stadskernen</td>
<td>28.267 ha</td>
<td>27.658 ha</td>
<td>27.960 ha</td>
<td>28.635 ha</td>
</tr>
<tr>
<td>Overig</td>
<td>21.073 ha</td>
<td>22.664 ha</td>
<td>22.428 ha</td>
<td>21.850 ha</td>
</tr>
</tbody>
</table>
Figuur 71: Evolutie oppervlakte per sprawltype per scenario in verschillende tijdsstappen
Inwoners per sprawltype

In functie van de monetarisering van mobiliteit wordt de evolutie in aantal inwoners per sprawltypes geanalyseerd om in te schatten wat de bijkomende maatschappelijke kost is om het mobiliteitsvraagstuk in de verschillende scenario’s te ondersteunen. De volgende figuur (Figuur 72) toont het absolute aantal inwoners dat per sprawltype verwacht wordt per scenario. De kleur van de lijn symboliseert binnen welk sprawl type de inwoners wonen. In het GAU-scenario kent de verspreide bebouwing een opvallende bevolkingsstijging. Dit is de grootste absolute stijging (groei van meer dan 500.000 inwoners). In het BRV-scenario is het type stadsranden en dorpskernen de grootste stijger (groei van meer dan 700.000 inwoners, zijnde 28% bevolkingsgroei). In het AUS-scenario kent het type stadskernen de grootste bevolkingsgroei (+ groei van bijna 800.000 inwoners, zijnde 51% bevolkingsgroei)
Figuur 72: Evolutie aantal inwoners per sprawltypen per scenario
Oppervlakte landgebruiksverandering

Figuur 73 toont de evolutie van de onbebouwde landgebruiken (landbouw, bos en natuur) en bebouwde landgebruiken (residentieel, industrie, handel en diensten) per scenario in verschillende tijdsstappen aan de hand van Sankey diagrammen.

Analoog aan Figuur 71 toont elk diagram in de uiterst linkse kolom het aantal ha landgebruik bebouwd (grijs) versus onbebouwd (groen) bij start van de simulatie, in 2013. Uiterst rechts tonen de blokken de verdeling van het landgebruik bij einde van de simulatie, in 2050. Als tussenstappen is de verdeling van de oppervlakte in 2025 en respectievelijk 2035 weergegeven. Per tijdstap (2013-2025; 2025-2035; 2035-2050) toont het diagram via ‘golven’ de evolutie die oppervlaktes ondergaan in die betreffende periode. De ‘golf’ wordt gekleurd in functie van het type waarin de weergegeven oppervlakte wordt verwacht om te zetten (volgens het scenario). De grootte van de ‘golven’ zijn proportioneel aan de hoeveel oppervlakte die omzet van één typologie naar een andere. Oppervlakte die doorheen de tijd bij hetzelfde type blijft, blijft in dezelfde kleur (en gaat min of meer horizontaal, die golf niet).

In de resultaten van het GAU-scenario valt het op dat in elke tijdsstep er een significante omzetting optreedt van onbebouwd naar bebouwd. Deze golven zijn in het BRV-scenario opvallend kleiner en in het AUS-scenario is het naar het einde van de simulatie toe zelfs een omgekeerde flow van bebouwd naar onbebouwd die plaats vindt.
Figuur 73: Evolutie oppervlakte per landgebruik per scenario in verschillende tijdsstappen
5.3.2. Maatschappelijke kosten voor alternatieve toekomstscenario’s

Rekening houdend met de evolutie in het aantal ha per sprawltype en de bestaande wegenis en infrastructuur die per sprawltype aanwezig is, kunnen we de evolutie in lokale wegenis en nutsvoorzieningen ruwweg schatten op basis van het gemiddeld aantal lopende meters lokale wegenis per ha per sprawltype (}
Tabel 10). De resultaten geven aan dat de hoeveelheid lokale wegenis in een GAU-senario nog altijd met ongeveer 15% toeneemt tussen nu en 2050. In het BRV-senario stijgt de lokale wegenis tussen nu en 2050 met ongeveer 6,6%. In het AUS-senario neemt deze stijging af tot 3,4%, met vooral ook een stagnering van de hoeveelheid wegenis vanaf 2035 ongeveer.

Figuur 74: Evolutie van hoeveelheid lokale wegenis in het GAU, BRV- en AUS-senario

Voor de berekening van de impact van mobiliteit gaan we uit van het bestaande verplaatsingsgedrag in de verschillende sprawl-types en het aantal inwoners per sprawl-type. In het GAU-senario blijven het aantal personenkilometers met de auto linear stijgen met de stijging van de bevolking. Dit betekent dat de hoeveelheid personenkilometers met de auto met ongeveer 24% toeneemt in het GAU-senario. In het BRV-senario stijgt dit met 17% en in het AUS-senario met 13%. In alle drie de scenario’s neemt dus nog altijd de hoeveelheid personenkilometers met de auto toe. Belangrijke assumptie hierbij is dus wel dat we er vanuit gaan dat bestaande mobiliteitspatronen in functie van woonlocatie (sprawl-type) gelijk blijven. Mogelijks zit hier een overschatting die consistent wordt meegenomen over alle scenario’s.

Figuur 75: Evolutie van de jaarlijkse hoeveelheid personenkilometers met de auto in het GAU, BRV- en AUS-senario

Voor de berekening van de impact van veranderingen in open ruimte wordt gekeken naar de gesimuleerde evoluties in ha per sprawl-type aangezien er van uitgegaan wordt dat de verhardingsgraad doorheen de jaren aangehouden wordt in de verschillende types. Behalve binnen het type ‘niet/zeer dun bebouwd’ waarvoor gerekend wordt met een geleidelijke afname van de totale verharding zodanig dat in 2050 de verhardingsgraad met 20% is afgenomen.

Dit betekent dat de hoeveelheid verharding met ongeveer 18% toeneemt in het GAU-senario. In het BRV-senario stijgt dit met 9% en in het AUS-senario met 4%. In alle drie de scenario’s neemt dus ook
nog altijd de totale hoeveelheid verharding toe. Enkel in het AUS-scenario wordt de evolutie gekenmerkt door een stijging in de eerste periode maar een afname van verharding tussen 2025-2050.

Figuur 76: Evolutie van de jaarlijkse hoeveelheid verharding in het GAU, BRV- en AUS-scenario

Als we deze effecten vertalen naar maatschappelijke kosten en het verschil in kosten berekenen van het BRV- en het AUS-scenario realiseren deze op basis van de drie beschouwde kostenposten jaarlijkse baten tot € 2,8 miljard in het AUS-scenario en € 1,7 miljard in het BRV-scenario. De baten nemen hierbij vooral toe in de laatste 15 jaar, naarmate de verschillen tussen de scenario’s ook toenemen. De grootste baten, op de lange termijn, situeren zich op vlak van mobiliteit.

Figuur 77: Jaarlijkse baten van BRV en AUS-scenario t.o.v. GAU-scenario in miljoen € per jaar

In Figuur 78 worden de groeiende baten van de verschillende kostenposten voor de alternatieve scenario’s verbeeld. Via deze infographic manier willen we de resultaten van deze studie voor een breed publiek inzichtelijk maken.
Figuur 78: infographic monetarisatie van de alternatieve toekomstscenario’s ‘verdere inname open ruimte’ (GAU), ‘terugdringen inname open ruimte’ (BRV) en ‘open ruimte teruggeven’ (AUS)

De totale netto contante waarde van de baten van het BRV-scenario t.o.v. het GAU-scenario tussen nu en 2050 bedraagt € 15,9 miljard. Voor het AUS-scenario lopen deze baten op tot € 25,6 miljard. Belangrijk hierbij is dat met name de baten het grootst zijn in 2050 en dat de baten heel wat verder zullen oplopen als ook de periode na 2050 mee in rekening wordt gebracht. Als we veronderstellen dat effecten zich voortzetten tot 2100 en dit mee in rekening brengen, verdrievoudigt de totale netto contante waarde.
Figuur 79: Netto contante waarde cumulatieve baten van BRV en AUS-scenario t.o.v. GAU-scenario in miljoen €
6. Onderdeel 4: Een maatschappelijke discussie over urban sprawl in Vlaanderen opzetten

6.1. Belang van een maatschappelijke discussie

Het fenomeen urban sprawl in Europa en ook in Vlaanderen is het gevolg van materiële welvaart gekoppeld aan een levensstijl. De voorkeur voor een individuele vrijstaande woning, in het groen en ver weg van de stad groeide in Vlaanderen vanaf de jaren zestig, maar bestaat nog tot op vandaag.

Het onderzoek naar de monetarisering van urban sprawl brengt wetenschappelijke inzichten aan over dit fenomeen en toont tegelijkertijd hoe het met een aangepast beleid aangepakt kan worden. Inzicht alleen zal echter niet voldoende zijn om het fenomeen daadwerkelijk af te remmen, te stoppen of om te keren. Daarvoor is een gedragsverandering nodig bij de brede bevolking, die erin slaagt de ‘Vlaamse droom’ te transformeren.

Om die reden is er binnen deze opdracht gekozen om - aanvullend aan het onderzoek - in te zetten op het ontsluiten van de resultaten en inzichten naar verschillende stakeholders. Dit met als doel een maatschappelijke discussie op gang te trekken, die ook na het beëindigen van het onderzoek kan doorgaan. Vanuit het onderzoeksteam maar ook vanuit het Departement Omgeving zijn we er immers van overtuigd dat vanuit de maatschappelijke discussie een ander ruimtelijk beleid richting kan krijgen.

6.2. Visie op de maatschappelijke discussie over Urban Sprawl in Vlaanderen

Wanneer we spreken over het realiseren van een gedragsverandering, gaat het om het krijgen van mensen van punt A naar punt B. Vaak is duidelijk wat de gewenste situatie is (punt B); enkel de positie ten opzichte van deze gewenste situatie (punt A) verschilt van doelgroep tot doelgroep. Dit verschil is relevant voor communicatie want afhankelijk van deze positie zijn andere boodschappen of acties nodig om te evolueren naar punt B.

In het geval van Urban Sprawl is echter nog niet duidelijk bepaald waar punt B ligt. Net daarom is onder andere dit wetenschappelijk onderzoek gevoerd naar de maatschappelijke kosten. Het communiceren van deze onderzoekresultaten zal zich dus nog niet meteen richten op de gewenste gedragsverandering maar vooral trachten mensen gevoelig te maken voor de problematiek. Dit door de kosten ervan inzichtelijk te maken en ruimte te geven aan een maatschappelijke discussie, wat aanleiding kan geven tot concrete maatregelen op welk niveau dan ook.
1. We communiceren cijfers, geen beleid.
Het onderzoek moet aanleiding geven tot beleid maar bevat nog geen beleid.
2. We brengen cijfers over 3 thema’s, geen totaal cijfer.
Het aantal thema’s waarvan resultaten beschikbaar zijn, is beperkt. Daarom is het niet juist om een totaalcijfer te brengen.
De cijfers geven wel een duidelijke trend aan van waaruit we kunnen veronderstellen dat dit voor andere thema’s dezelfde richting zou uitgaan.
3. We activeren experten om de resultaten te nuanceren en in hun context te plaatsen.
De cijfers en hun interpretatie zijn complex en zullen leiden tot discussie over de cijfers en over de interpretatie. Het is belangrijk dat verschillende stemmen in de discussie naar voren komen.
De problematiek is breder dan het financiële en ruimer dan de drie thema’s.
Voordelen van het terugdringen van urban sprawl zijn groter dan het financiële: energie, luchtkwaliteit, OV, uitbouwen lokale voorzieningen, ...
Boodschappen zijn sterker als ze van buitenaf komen.

6.3. Aanpak van de maatschappelijke discussie

6.3.1. Doelgroepen en doelstellingen
Zoals toegelicht in de visie richten de inspanning bij het communiceren van de onderzoeksresultaten zich naar het opzetten van een maatschappelijke discussie over de problematiek. We onderscheiden daarbij drie doelgroepen die verschillen in de mate waarin ze impact kunnen hebben op de aanpak van het fenomeen urban sprawl.
1. Politici
Het gaat hierbij zowel om Vlaamse als lokale politici. Deze doelgroep heeft vanzelfsprekend de meeste impact op het toekomstige beleid. Voor hen is het dus zeker belangrijk om inzicht te krijgen in de resultaten. Zij worden dan ook vooral benaderd met de eindresultaten van de studie.
2. Professionele actoren
Deze doelgroep omvat mensen die vanuit hun professionele activiteiten een link hebben met ruimtelijk beleid waaronder Vlaamse, provinciale en lokale administraties, architecten, stedenbouwkundigen, nutsbedrijven, intercommunales, zorginstellingen, projectontwikkelaars, ...
Van hen verwachten we dat zij mee de maatschappelijke discussie voeden. Daardoor zijn een aantal experten ook bij het onderzoek zelf nauw betrokken geweest via de stuurgroep, de VRP-labs en de Werelddag voor de stedenbouw. Op die manier kon de studie ook gevoed worden met inzichten uit de praktijk.
3. Het brede publiek
Dit omvat zowat iedereen die onder de vorige twee doelgroepen valt. Het gaat dus om een zeer brede groep van burgers en middenveldorganisaties. De acties die zich richten naar deze doelgroep hebben als doel de mensen bewust te maken van de problematiek en vormen vooral een uitnodiging om deel te nemen aan de maatschappelijke discussie.

Naarmate een beleid (en dus een gewenst eindpunt) verder vorm krijgt, zal het in functie van een gedragsverandering wel belangrijk zijn om deze doelgroep verder in te delen volgens hun positie ten aanzien van dit beleid.
6.3.2. Opzet

We kiezen ervoor om de inspanningen in één beperkte periode te bundelen, om op deze manier een zo groot mogelijke impact te hebben. Bij opdeling van de inspanningen, zou de impact kleiner zijn. In deze aanpak zitten twee mijlpalen: een uitvoerige behandeling van het thema op de Werelddag van de stedenbouw 2018 en een persmoment dat moet leiden tot een dialoog met het brede publiek en zo ook politiek een weerklank te krijgen. Deze momenten worden ondersteund met een aantal communicatiemiddelen.

Acties gericht op professionele actoren

1. **Stuurgroepen**

Binnen de stuurgroepen werden op een drietal momenten de tussentijdse resultaten besproken met een diverse groep van professionele experts vanuit diverse administraties. Op basis van de gesprekken in deze stuurgroepen werden de studieresultaten verfijnd.

2. **VRP Labs**

Het VRP Lab is een expertengroep (denktank) die in de diepte reflecteert over cruciale ruimtelijke thema’s. Met de Labs wil de VRP via discussie en debat tot gedeelde en gedragen standpunten komen. De samenstelling van het lab verschilt van onderwerp tot onderwerp. Zo bestond het Lab Urban Sprawl uit een twintigtal personen, zowel ruimtelijk planners als lokale stakeholders. In het kader van deze opdracht kwamen zij drie keer samen om binnen het neutraal en open platform van het lab te reflecteren over de toekomstscenario’s.

Het eerste lab werd opgebouwd rond het definiëren van de scenario’s. Daarop volgde het tweede lab waarbij de aangepaste scenario’s werden getoetst op hun realiteitszin. Tot slot, werden in het derde lab de finale scenario’s besproken en aangevuld met beleidsaanbevelingen. De incrementele aanpak van de labs droeg ertoe bij dat het gevoerde onderzoek sterker werd onderbouwd en een eerste keer afgetoetst werd aan de praktijk.

3. **Werelddag van de Stedenbouw**

De Werelddag van de Stedenbouw is de jaarlijkse hoogdag voor ca. 300 stedenbouwkundigen, ruimtelijk planners, overheden en middenveldorganisaties. Deze studie- en netwerkdag focust elk jaar op een andere uitdaging in het vakgebied en nodigt daarvoor eminente sprekers uit binnen- en buitenland uit. De Werelldag vindt elk jaar plaats in november, naar aanleiding van de World Town Planning Day op 8 november.

In 2018 stond de Werelldag in het teken van de (tussentijdse) onderzoeksresultaten over de maatschappelijke kosten van Urban Sprawl in Vlaanderen. Aan de hand van presentaties, workshops, discussiesessies, politiek debat en andere werkvormen werden de resultaten met het werkveld besproken.

4. **Verspreiden onderzoeksresultaten naar professionele actoren**

Vanuit de kennis van de vakwereld - zowel van het Departement Omgeving als VITO, VRP en Common Ground – werd een lijst van experten samengesteld die interesse zouden kunnen hebben in de onderzoeksresultaten. Door hen de resultaten te bezorgen willen we niet enkel kennis delen maar hen ook aanzetten om een stem te zijn in de maatschappelijke discussie.

Op initiatief van professionele actoren en op voorwaarde van een groot bereik, is het ook mogelijk een toelichting te krijgen van het onderzoeksteam Dit gebeurde onder andere reeds op uitnodiging van het Team Vlaams Bouwmeester.
Acties gericht op politici

5. Toelichting aan het kabinet Omgeving

Wanneer we politieke actoren willen aanzetten tot beleid, is het belangrijk om ook hen inzicht te geven in de resultaten van de studie. Het gaat dan zowel over hoe het fenomeen van urban sprawl zich in Vlaanderen manifesteert, als over de maatschappelijke kosten die hieraan verbonden zijn, hoe deze kunnen evolueren onder invloed van bepaalde beleidskeuzes en wat daarvan de baten kunnen zijn. Deze toelichting zal gebeuren door het Departement Omgeving.

6. Mailing naar gemeentebesturen

Na de toelichting zal vanuit het Departement Omgeving een communicatie vertrekken naar de verschillende gemeentebesturen met daarin de resultaten en inzichten van de studie.

Acties brede publiek

7. Persstrategie

Om de onderzoekresultaten voor het brede publiek te positioneren en bepaalde problematieken hierbij te introduceren zetten we in op een persstrategie. Deze bestaat erin journalisten proactief aan te spreken en hen met het nodige materiaal door te nemen om ruim over het thema te communiceren. Anderzijds bestaat de persstrategie ook uit het activeren van diverse stemmen in het maatschappelijk debat. Meer informatie daarover is te lezen onder de titel: acties gericht op professionele actoren.

Communicatieproducten

Om de maatschappelijke dialoog op te zetten ontwikkelden we binnen deze opdracht een aantal communicatieproducten. Deze producten kunnen ingezet worden op diverse kanalen en aangepast worden aan diverse doelgroepen. Op die manier kunnen ze ook na deze opdracht door het Departement Omgeving verder ingezet worden voor de communicatie rond het fenomeen urban sprawl.

In de keuze voor deze producten stelden we voorop:

- De onderzoekresultaten toegankelijk en leesbaar te maken, ook voor wie geen expert is in de materie zowel in tekst als beeld
- De ontvangers enthousiasmeren om de resultaten te bekijken en te interpreteren. Daarom zetten we in op aantrekkelijke visualisaties en producten met een zekere belevingswaarde.
- De ontvangers activeren of aanmoedigen om (binnen hun mogelijkheden) met de resultaten aan de slag te gaan door de focus te leggen op de winsten en niet op de verliezen.
- De mogelijkheden maximaliseren om andere stemmen in het debat te activeren.

1. Eindrapport

Een eindrapport met een duidelijk opbouw die bijdraagt aan de toegankelijkheid en leesbaarheid van de onderzoekresultaten. Bovendien voorzien van een beknopte samenvatting zodat ook met wie minder tijd heeft de belangrijkste inzichten kunnen gedeeld worden.

2. Presentatie van het onderzoek

We vertaalden het onderzoek naar een interessant verhaal in woord en beeld. Het gaat dan onder andere over aantrekkelijk kaartmateriaal, grafieken en infographics van de belangrijkste data. Dit
materiaal kan verder gebruikt worden in presentaties, brochures en andere publicaties, op websites, ...

3. **Perstekst**
Om uitvoering te geven aan de persstrategie ontwikkelden we een perstekst die de interesse van de journalisten prikkelde. Deze tekst kan ook als basis dienen voor andere publicaties gericht op het brede publiek.

4. **Artikel voor vakblad Ruimte**
Het vakblad Ruimte van januari 2019 stond volledig in het teken van Urban Sprawl. Ook hierin werd een artikel opgenomen dat de onderzoeksresultaten op een beknopte wijze toelicht aan professionele actoren. De tekst kan als basis dienen voor andere gelijkaardige publicaties.

5. **Een informerende en wervende video**
Het medium video blijft interessant om in te zetten voor bewustwording rond complexe materie. Dit omdat de inspanning om de informatie te ontvangen en te delen beperkt is. Bovendien hebben bewegende beelden vaak meer impact. Het betreft dan ook een compact video van een tweetal minuten waarin aantrekkelijk en geanimeerd beeldmateriaal de belangrijkste resultaten inzichtelijk maakt.

Tot slot, is een video erg interessant om breed in te zetten en te delen. Zo kunnen professionele actoren bij presentaties, op colloquia, op interne overlegmomenten, … gebruik maken van dit materiaal.

6.4. **Verwachte resultaten en vervolg**
Het actieplan dat binnen deze opdracht tot stand kwam, richtte zich op een ruime maatschappelijke dialoog over urban sprawl. En dit op verschillende relevante niveaus: het politieke niveau, het professionele niveau en het publieke niveau. Daarnaast werd ook materiaal ontwikkeld dat ook na deze opdracht door de opdrachtgever verder ingezet kan worden voor communicatie over het fenomeen urban sprawl.

De Werelddag van de Stedenbouw toonde reeds aan dat er bij een professioneel publiek grote interesse is in de thematiek. De dag kon op meer dan 300 deelnemers rekenen. Op basis daarvan verwachten we dat de cijfers ook bij politici en het brede publiek reactie zullen uitlokken. De belangrijkste uitdaging daarbij ligt voor ons in het houden van de focus op het fenomeen en niet op de cijfers an zich en de wijze waarop ze zijn opgebouwd. Of dit onderzoek uiteindelijk zal leiden tot een ander ruimtelijk beleid zal afhangen van veel externe factoren, waaronder niet in het minst de politieke verkiezingen van 2019.
7. Conclusies en aanbevelingen

7.1. Vlaanderen is de sprawl kampioen in Europa.

In 2016 bracht het Europees Milieuagentschap voor het eerst de graad van urban sprawl voor het volledige Europese grondgebied in kaart. Het onderzoek dat hieraan voorafging ontwikkelde een rekenmaat, Weighted Urban Proliferation (WUP), die rekening houdt met stedelijke omvang, mate van ruimtelijke versnippering en activiteitsgraad (inwoners plus tewerkstelling). België heeft van alle Europese landen volgens deze analyse de tweede hoogste graad van sprawl. Indien de Europese cijfers in meer ruimtelijk detail worden geanalyseerd, valt op dat dit vooral te wijten is aan het hoge sprawl-gehalte in Vlaanderen.

Wanneer we de Europese rekenmaat toepassen op Vlaamse gegevens over ruimtebeslag, blijkt dat 95 procent van de Vlaamse bevolking in gebied woont dat bestempeld kan worden als ‘urban sprawl’. Enkel de centra van onze grootste steden, de grotere aaneengesloten open ruimtegebieden en enkele grotere natuurgebieden worden niet als urban sprawl gezien volgens deze berekening.

Het blijft echter moeilijk om op basis van de continue WUP-maat een uitspraak te doen of een gebied al dan niet als ‘urban sprawl’ kan bestempeld worden. Deze maat is eerder bedoeld om gradaties van het fenomeen aan te geven.

Om het urban sprawl-fenomeen in Vlaanderen dus te kunnen vertalen naar maatschappelijke kosten werd in deze studie een nieuwe typologie ontwikkeld waarbij we Vlaanderen indelen in 5 categorieën:

- Niet/dun bebouwd
- Zones gedomineerd door verspreide bebouwing
- Zones gedomineerd door dun bebouwde verkavelingen en lintstructuren
- Zones gekenmerkt door dichtheden van dorpskernen en stadsraden
- Gebieden met stedelijke dichtheden (stadskernen)

Deze categorieën werden vervolgens gebruikt om de maatschappelijke kosten in rekening te brengen.
De maatschappelijke kosten van sprawl zijn hoog.

Vertrekkende van deze sprawl-typologie hebben we voor zover mogelijk de maatschappelijke kosten van urban sprawl begroot. Dit is gebeurd op basis van een literatuurstudie, aangevuld met een stakeholderbevraging. De resultaten (inzichten, eenheidskosten, identificatie kostendrijvers) hiervan werden gecombineerd met een ruimtelijke analyse om de grootte van verschillende kostendrijvers zoals hoeveelheid wegenis, verhardingsgraad en ruimtebeslag en verplaatsingsbedrag te becijferen per sprawl-categorie. Deze cijfers zijn vervolgens gebruikt om een gemiddelde kost per huishouden of gebouw te bepalen voor infrastructuur, mobiliteit en open ruimte (ecosysteemdiensten). Voor deze drie kostenposten (1) konden kerncijfers verzameld worden bij Vlaamse instanties die verantwoordelijk zijn voor vb. het uitvoeren van herstellingen of operationeel houden van diensten en (2) zijn de kostendrijvers te linken zijn aan ruimtelijke en meetbare indicatoren die per sprawl-categorie kunnen berekend worden. Bovendien komen deze drie kostenposten uit de literatuur veelvuldig terug als kostenposten met een duidelijk aangetoonde meerkost van urban sprawl.

Onder de maatschappelijke kosten van *infrastructuur* verstaan we de kosten die gepaard gaan met de aanleg en onderhoud van wegen, nutsvoorzieningen (water, gas, elektriciteit, riolering) en verlichting. Deze kosten worden berekend per lopende meter lokale weg. Dit zijn alle wegen die geen bovenlokale verbindende functie hebben. De jaarlijkse kost per lopende meter is in stedelijk gebied ongeveer 30 procent hoger dan in landelijk gebied. Bij verspreide bebouwing blijkt er per gebouw tien keer meer infrastructuur nodig te zijn dan in een stads kern. Daardoor ligt de jaarlijkse kostprijs van infrastructuur er per gebouw zeven keer hoger. Een concreet meerkoost waarmee we op dit moment en het komende decennium geconfronteerd worden is de resterende aanlegkosten voor riolering die tot € 10 miljard kunnen oplopen en zich vooral situeren langs linten, verkavelingen en gebieden met verspreide bebouwing.
Uit een analyse van verplaatsingsgegevens blijkt dat wie buiten de stadskern woont, vaker de auto gebruikt voor verplaatsingen. In stadskernen gebeuren nog 49 procent van het aantal verplaatsingen met de auto, maar in verspreide bebouwing loopt dit op tot 77 procent. Omgekeerd gebeurt in een stadskern 26 procent van de trips te voet, terwijl dit in verspreide bebouwing slechts 5 procent bedraagt. Ook het openbaar vervoer (trein en bus) wordt het meest gebruikt in de stadskern met 10 procent van alle trips in vergelijking met 4 procent van alle trips in de andere sprawl-categorieën. De gemiddelde reistijd per persoon met de personenwagen in het type verspreide bebouwing bedraagt 5 uur per week terwijl dit voor een stadskern 3,3 uur is.

Naast de private kosten van verplaatsingen die particulieren maken, worden nog een heel aantal bijkomende externe kosten veroorzaakt. Hieronder vallen: externe kosten veroorzaakt omwille van luchtvervuiling, klimaatverandering, file, geluidshinder, ongevallen en – in het geval van vrachtwagens, spoor, binnenvaart en zeevaart – slijtage en schade aan de infrastructuur. Deze eenheidskosten per afgelegde kilometer in combinatie met het aantal afgelegde kilometers per vervoersmodus resulteert in een maatschappelijke kosten van mobiliteit die minstens dubbel zo groot is voor huishoudens in verspreide bebouwing tegenover huishoudens in de stadskern.

De toenemende verharding die gepaard gaat met verstedelijking, zorgt niet alleen voor een verlies aan open ruimte, maar ook aan ecosysteemdiensten. Als we de totale verharding per sprawl-categorie berekenen, inclusief de verharding in de niet-private ruimte, bedraagt deze in een stadskern 67 procent. Dit daalt tot 9 procent in geval van verspreide bebouwing. We zien dus procentueel minder verharding buiten de stadskern. Maar uitgedrukt per gebouw varieert de verharding van 370 m² per gebouw tot 1.700 m² per gebouw of ongeveer een vervijfvoudiging. Als we het verlies aan ecosysteemdiensten dat daar het gevolg van is vertalen naar euro's, varieert dat tussen 90 euro voor de stadskern en 420 euro voor verspreide bebouwing per gebouw per jaar.

Naast de bovenstaande drie kostenposten werd ook gekeken naar publieke dienstverlening op basis van jaarrekeningen van gemeentes uit de Beleids- en Beheerscyclus (BBC). De meerkost van sprawl op publieke dienstverlening werd niet eenduidig aangetoond in de literaturu en ook in Vlaanderen blijkt dit niet uit de bestaande gemeentelijke uitgaven. Hiervoor zijn er verschillende verklaringen. In de eerste plaats zijn gemeentes vaak heel divers zijn samengesteld (combinaties verspreide bebouwing en kernen). Verder hebben allerhande andere factoren die niet gerelateerd zijn aan urban sprawl een impact op gemeentelijke kosten (verschil in kwaliteit in dienstverlening, grensgebieden, toerisme, etc.). Tot slot hangen de gemeente-uitgaven ook samen met hun inkomsten. Deze liggen over het algemeen hoger in stedelijke kernen die bovendien ook heel wat gemeentelijke diensten op een bovenlokaal niveau organiseren. Voor diensten waarvoor verplaatsingen nodig zijn zijn tot aan de woning, zoals postbedeling en afval-inzameling, veroorzaakt urban sprawl vermoedelijk wel meerkosten, maar deze meerkost is niet evenredig met de gereden afstanden gezien de snelheid van verplaatsing over het algemeen iets hoger ligt in landelijk gebied dan in stedelijk gebied en de personeelskost er dus ook lager zal zijn.

7.3. De keuzes die we vandaag maken zullen vooral een effect hebben op de langere termijn.

Op basis van de huidige meerkosten van urban sprawl kunnen we ook inschatten hoe deze kosten in de toekomst zullen evolueren onder verschillende scenario’s. Concreet worden er in deze studie 3 alternatieve ruimtescenario’s ontwikkeld en vergeleken:

1. Het **Growth-as-usual (GAU) scenario**. Dit scenario gaat uit van een voortzetting van de huidige ruimte-inname. De dagelijkse groei van het ruimtebeslag heeft de laatste 15-tal jaar steeds rond 6ha geschoomd. In dit scenario gaan we er van uit dat deze groei van 6ha dag zich onverminderd blijft doorzetten tot 2050. Dit leidt tot een sterke groei in verwacht ruimtebeslag tegen 2050. Deze groei van het bijkomende ruimtebeslag wordt vooral gestuurd door het
bestaande landgebruik, de bestaande zoneringsplannen (gewestplan) en een goede bereikbaarheid via de weg en het openbaar vervoer.

2. Het Beleidsplan Ruimte Vlaanderen (BRV) scenario. Het BRV-scenario is een scenario dat gebaseerd is op een aantal ruimtelijke criteria en doelstellingen uit de goedgekeurde strategische visie Beleidsplan Ruimte Vlaanderen. In dit scenario wordt de groei van het ruimtebeslag teruggebracht tot 0 ha per dag tegen 2040. Bovendien wordt de bijkomende bevolkingsgroei zoveel mogelijk gestuurd naar de kernen met een hoge knooppuntwaarde en voorzieningenniveau waar een verdichting zal optreden.

3. Het Anti-urban sprawl (AUS) scenario. Dit is een scenario heeft als doel om de groei van het ruimtebeslag niet enkel terug te brengen naar 0 ha/dag, maar om de evolutie op termijn zelfs een negatief verloop te geven. Dit komt neer op een verwijdering van bebouwing en dus ook van ruimtebeslag op slecht gelegen locaties. Ook in dit scenario wordt, net zoals in het BRV scenario, de groei dus grotendeels gestuurd op basis van kernen met een hoge knooppuntwaarde en voorzieningenniveau.

In totaliteit zal het ruimtebeslag in Vlaanderen van de (geobserveerde) 32,5% in 2013 tot ongeveer 38,5% in 2013 tot ongeveer 33,6% tegen 2035, waarna de negatieve evolutie het niveau van het ruimtebeslag tegen 2050 terugbrengt tot ongeveer het niveau van 2016 (32,9%). Dit in combinatie met het feit dat we uitgaan van dezelfde toename in bevolkings- en economische groei in de drie scenario’s, betekent dat ze vooral zullen verschillen in de mate van dichtheid van bebouwing, bewoning en werkgelegenheid in 2050. Dit heeft dan ook een grote impact op de mate van urban sprawl, gemeten aan de hand van de sprawl-typologie uit Onderdeel 1 van de studie. In het GAU-scenario kent vooral de categorie ‘verspreide bebouwing’ een zeer grote bevolkingsstijging (groei van meer dan 500.000 inwoners). In het BRV-scenario is het type ‘stadsranden en dorpskernen’ de grootste stijger (groei van meer dan 700.000 inwoners). In het AUS-scenario, tot slot, kent het type ‘stadskernen’ de grootste bevolkingsgroei (groei van bijna 800.000 inwoners).

Deze bevolkingsgroei in de verschillende sprawl-categorieën heeft ook impact op infrastructuur, mobiliteit en inname van open ruimte. De resultaten geven aan dat de hoeveelheid lokale wegen is in een GAU-scenario met ongeveer 15% zal toenemen tussen nu en 2050. In het BRV-scenario stijgt de lokale wegen is tussen nu en 2050 met ongeveer 6,6%. In het AUS-scenario is er een stijging van 3,4%, maar stagneert de groei van nieuwe lokale wegen vanaf 2035. De totale hoeveelheid personenkilometers met de auto neemt met ongeveer 24% toe in het GAU-scenario. In het BRV-scenario stijgt dit met 17% en in het AUS-scenario met 13%. Deze absolute toename van het aantal personenkilometers met de auto is uiteraard te wijten aan het feit dat de totale bevolkingsomvang ook toeneemt. Indien we echter kijken naar het aantal gereden kilometer met de auto per inwoner, zien we een kleine stijging in het GAU-scenario (+3%), een evenaring van het huidige aantal gereden kilometers in het BRV-scenario en een kleine daling in het AUS-scenario (-3%).

Indien we deze effecten vertalen naar maatschappelijke kosten, kunnen we het verschil in kosten berekenen van het BRV- en het AUS-scenario ten opzichte van het GAU-scenario. Indien we het GAU-scenario dus als een soort ijkpunt zien, kunnen we de vermeden kosten, of dus baten, ten opzichte van het GAU-scenario berekenen. Op die manier realiseren we dus tegen 2050 jaarlijkse baten tot € 2,8 miljard voor het AUS-scenario en € 1,7 miljard voor het BRV-scenario. De jaarlijkse baten nemen hierbij vooral toe in de laatste 15 jaar, naarmate de verschillen tussen de scenario’s ook toenemen. De grootste baten situeren zich op vlak van mobiliteit. De baten voor infrastructuur en open ruimte zijn kleiner, maar lopen nog steeds op tot ongeveer 400 miljoen per jaar tegen 2050 in AUS en tot ongeveer 250 miljoen per jaar in BRV. De totale netto contante waarde van de cumulatieve baten voor de periode 2013-2050 van het BRV-scenario t.o.v. het
GAU-scenario bedraagt € 15,9 miljard. Voor het AUS-scenario lopen deze baten op tot € 25,6 miljard. Indien we veronderstellen dat effecten zich voortzetten tot 2100 en dit mee in rekening brengen, verdrievoudigt de totale netto contante waarde.

7.4. Professionele actoren als trekkers van de maatschappelijke dialoog

Het actieplan dat binnen deze opdracht tot stand kwam, richtte zich op een ruime maatschappelijke dialoog over urban sprawl. En dit op verschillende relevante niveaus: het politieke niveau, het professionele niveau en het publieke niveau. Daarnaast werd ook materiaal ontwikkeld dat ook na deze opdracht door de opdrachtgever verder ingezet kan worden voor communicatie over het fenomeen urban sprawl.

De Werelddag van de Stedenbouw toonde reeds aan dat er bij een professioneel publiek grote interesse is in de thematiek. De dag kon op meer dan 300 deelnemers rekenen. Na de plenaire sessies werden in verschillende thematische werkgroepen geanimeerde gesprekken gevoerd over hoe dit fenomeen de komende jaren aangepakt moet en kan worden. Dit versterkt ons gevoel dat de professionele actoren klaar zijn om de dialoog aan te gaan, met elkaar maar ook met de politiek en zelfs het brede publiek.

Op basis daarvan verwachten we dat de studie ook bij politici en het brede publiek reactie zal uitlokken. De belangrijkste uitdaging daarbij ligt voor ons in het houden van de focus op het fenomeen en niet op de cijfers an sich en de wijze waarop ze zijn opgebouwd. Of dit onderzoek uiteindelijk zal leiden tot een ander ruimtelijk beleid zal afhangen van veel externe factoren, waaronder niet in het minst de politieke verkiezingen van 2019.

7.5. Aanbevelingen voor verder onderzoek en toepassing van de resultaten

7.5.1. Werk aan een gedragen business-as-usual scenario

Deze studie neemt het Growth-as-usual (GAU) scenario als referentie om de potentiële maatschappelijke baten van 2 alternatieve scenario’s te berekenen. Het GAU-scenario hanteert een constant jaarlijks bijkomend ruimtebeslag van 6ha per dag tot 2050. Deze aanname is gebaseerd op de geobserveerde groei van de ‘bebouwde gronden en aanverwante terreinen’ op basis van statistieken over het bodemgebruik in Vlaanderen (schattingen Algemene Directie Statistiek – Statistics Belgium op basis van gegevens van het FOC Financiën (Kadaster), de Algemene Directie Statistiek – Statistics Belgium (Landbouwtelling) en literatuur). Volgens deze cijferreeks is er een dagelijkse groei van de bebouwde oppervlakte in Vlaanderen met zo’n 6 hectare (Figuur 81). De evolutie van deze groei bleef redelijk constant schommelen rond 6 ha/dag gedurende de laatste 15 jaar. Op basis van deze vaststelling werd in het GAU-scenario verkozen om deze geobserveerde dagelijkse groei aan te houden tot in 2050, of met andere woorden het ruimtebeslag groeit op een lineaire manier verder tot in 2050 (zoals te zien in Figuur 69).
Alhoewel de vaststelling dat de groei van het ruimtebeslag relatief constant is gebleven de laatste 15 jaar de assumptie ondersteunt dat de groei verder kan worden geëxtrapoleerd naar de toekomst, zegt dit niets over de mate waarin dit GAU-scenario een realistische voorspelling voor de toekomst geeft. Extrapolaties tot 2050 op basis van gegevens uit het verleden zijn namelijk niet zonder gevaar aangezien ze zeer gevoelig zijn aan de precieze set van de data en trendlijnen waarop ze zich baseren. Het scenario wordt om die reden ook met ‘growth-as-usual’ aangeduid en niet met ‘business-as-usual’.

Indien de groei van het ruimtebeslag per dag namelijk wordt vergeleken met de groei van de bevolking, zien we dat er de laatste 10 jaar ongeveer een stabilisering optreedt van de ‘dichtheid’ van het ruimtebeslag. Hierbij wordt dichtheid gedefinieerd als het aantal inwoners per hectare bebouwde oppervlakte. Daar waar in de jaren ‘90 nog een afname van de dichtheid optrad, zien we de laatste 10 jaar een stabilisering van de dichtheid per hectare. De groei van de bebouwde oppervlakte en de groei van de bevolking verlopen met andere woorden relatief gezien ongeveer even snel.

Het Federaal Planbureau voorspelt evenwel een afname van de snelheid waarmee de bevolking zal groeien tegen 2050 (Figuur 65). De combinatie van de constant groei van het ruimtebeslag (6 hectare per dag) en de voorspelde afnemende groei van de bevolking volgens het Federaal Planbureau, zou dus opnieuw resulteren in een daling van de ‘dichtheid’, of van het aantal inwoners per ha ruimtebeslag tegen 2050 (Figuur 82). Dit staat dus in contrast met de geconstateerde stabilisering van de dichtheid sinds 2008.

Figuur 81: geobserveerde groei bebouwde terreinen per dag (op basis van Statbel statistieken)

De figuur toont de geobserveerde groei bebouwde terreinen per dag op basis van Statbel statistieken. Hoewel de vaststelling dat de groei van het ruimtebeslag relatief constant is gebleven de laatste 15 jaar de assumptie ondersteunt dat de groei verder kan worden geëxtrapoleerd naar de toekomst, zegt dit niets over de mate waarin dit GAU-scenario een realistische voorspelling voor de toekomst geeft. Extrapolaties tot 2050 op basis van gegevens uit het verleden zijn namelijk niet zonder gevaar aangezien ze zeer gevoelig zijn aan de precieze set van de data en trendlijnen waarop ze zich baseren. Het scenario wordt om die reden ook met ‘growth-as-usual’ aangeduid en niet met ‘business-as-usual’.

Indien de groei van het ruimtebeslag per dag namelijk wordt vergeleken met de groei van de bevolking, zien we dat er de laatste 10 jaar ongeveer een stabilisering optreedt van de ‘dichtheid’ van het ruimtebeslag. Hierbij wordt dichtheid gedefinieerd als het aantal inwoners per hectare bebouwde oppervlakte. Daar waar in de jaren ‘90 nog een afname van de dichtheid optrad, zien we de laatste 10 jaar een stabilisering van de dichtheid per hectare. De groei van de bebouwde oppervlakte en de groei van de bevolking verlopen met andere woorden relatief gezien ongeveer even snel.

Het Federaal Planbureau voorspelt evenwel een afname van de snelheid waarmee de bevolking zal groeien tegen 2050 (Figuur 65). De combinatie van de constant groei van het ruimtebeslag (6 hectare per dag) en de voorspelde afnemende groei van de bevolking volgens het Federaal Planbureau, zou dus opnieuw resulteren in een daling van de ‘dichtheid’, of van het aantal inwoners per ha ruimtebeslag tegen 2050 (Figuur 82). Dit staat dus in contrast met de geconstateerde stabilisering van de dichtheid sinds 2008.

Figuur 81: geobserveerde groei bebouwde terreinen per dag (op basis van Statbel statistieken)
Figuur 82: geobserveerde (op basis van Statbel statistieken) dichtheid (in blauw) en gesimuleerde dichtheid (rood) volgens het GAU-scenario.

De vraag rijst dus of er niet beter gebruik zou worden gemaakt van een ‘business-as-usual’ (BAU) scenario, waarin de assumptie zou kunnen zijn dat de geobserveerde stabilisering van de inwonerdichtheid binnen het ruimtebeslag zich doorzet naar de toekomst. Dit in combinatie met de verwachte afnemende bevolkingsgroei zou resulteren in een lagere ruimte-inname per dag tegen 2050 dan momenteel in het GAU-senario het geval is. We moeten ons hierbij de vraag stellen of we, in de context van deze studie, met zo’n BAU-senario niet de impact van de boodschap minimaliseren. Dit door bijvoorbeeld de indruk te scheppen dat een onveranderd beleid ook zou leiden tot een daling van het bijkomend ruimtebeslag in de tijd terwijl dit in feite vooral verdienste is van een terugvallende bevolkingsgroei eerder dan van een verandering in beleid. Dit neemt echter niet weg dat andere studies wel nood hebben aan een BAU-senario waarin de aannames verder verfijnd en dieper geanalyseerd worden. Bijvoorbeeld door een onderscheid te maken in de dynamiek van de ruimte-inname in functie van wonen versus deze in functie van economische functies. Beide vertonen namelijk een verschillende trend in het verleden, welke zou kunnen worden gebruikt om ze op een verschillende manier te extrapoleren naar de toekomst. Verder onderzoek is nodig om te werken aan een breed gedragen, sterk wetenschappelijk BAU-senario dat voor verschillende toekomstverkenningen gebruikt zou kunnen worden als het referentiesenario.

7.5.2. Verhoog het maatschappelijk bewustzijn van de maatschappelijke kosten van urban sprawl.

Urban sprawl aanpakken in Vlaanderen is een gevoelig thema. Het maatschappelijk bewustzijn verhogen over de maatschappelijke kosten die dit veroorzaakt nu en vooral ook op de langere termijn is een heel belangrijke eerste stap. Deze studie besteedt dan ook terecht veel aandacht aan communicatie. Communicatie zal verder moeten gaan dan een kortstondige communicatie over de resultaten van deze studie. Dit is een proces van jaren.

Een aantal sterke kengetallen blijven herhalen tot ze verankerd zijn in het denken van politici, professionelen alsook het brede publiek kan hierbij een eenvoudige maar interessante strategie zijn.
“Een lopende meter infrastructuur aanleggen kost ongeveer € 2.000. Er is x meter nodig om tot bij mijn woning te geraken. Het kost de maatschappij dus x € om nutsvoorzieningen en wegen aan te leggen.”

“Ik veroorzaak 4x meer verharde oppervlakte als ik een gebouw realiseer in open ruimte t.o.v. een stadskern.

“Verspreid wonen kost mij als gezin ongeveer € 4.000 per jaar meer aan mobiliteitskosten in vergelijking met wonen in een stadskern”

7.5.3. Zet rekenmethodes uit om de baten van een verhoogd ruimtelijk rendement standaard onderdeel te maken van ruimtelijke beslissingen.

De studie en ook een aantal andere studies maken duidelijk dat er weinig algemene kennis is over de maatschappelijke kosten van sprawl. De korte en lange termijn impact van ruimtelijke beslissingen op de maatschappij in zijn geheel, uitgaven van diverse overheden, etc. komen niet of heel beperkt aan bod bij beleidsbeslissingen. Efficiëntie-denken vanuit maatschappelijk standpunt in ruimtelijk beleid is nog relatief nieuw.

Standaard rekenmethodes opzetten, die makkelijk inzetbaar zijn, zoals dit bijvoorbeeld gebeurt bij transport-projecten en de impact die dit veroorzaakt op luchtkwaliteit, congestie, e.d., verhoogt het bewustzijn en leidt tot betere beleidsbeslissingen.

Deze studie biedt hiervoor een eerste fundament en reikt kengetallen aan, maar deze moeten nog verder op maat worden aangepast zodat ze inzetbaar zijn op projectniveau. De eerste stappen hierin worden mogelijk gezet in het overstromingsbeleid waarin bekeken wordt hoe preventieve maatregelen (watertoevoer, verplaatsen van woningen in risico-gebieden) efficiënter kunnen zijn dan protectieve maatregelen (verhogen van dijken en aanleggen van overstromingsgebieden). De toepassing in de praktijk loopt echter nog moeizaam.

7.5.4. Werk aan een community of practice.

De kennis rond het berekenen van maatschappelijke kosten van ruimtelijk beleid is fragmentarisch en zit verspreid. Zowel bij administraties als bij consultancy- en onderzoeksbureaus is de hoeveelheid experts beperkt. Bovendien is de expertise vaak zeer specifiek voor een bepaald thema (bv. aanleg van infrastructuur). Dit maakt het moeilijk om efficiëntiedenken in ruimtelijk beleid verder uit te bouwen en op een geïntegreerde manier in te zetten.

Een eerste, eenvoudige stap is het verenigen van de fragmentarische kennis in een soort community of practice, die op regelmatige basis samenkomen en ideeën uitwisselt. Beleidsprogramma’s en studies moeten er vooral op gericht zijn om de lange termijn kennisbasis rond efficiëntiedenken verder uit te diepen en dichter bij de praktijk te brengen. Het gaat hierbij niet zozeer om het perfectioneren van specifieke cijfers (het zal op het niveau van grootte-ordes blijven), maar eerder over het in beeld brengen van alle mechanismes, zowel op het niveau van maatschappelijke kosten in zijn geheel als op het niveau van verdeel-effecten tussen verschillende actoren (Wie draagt de kosten en wie krijgt de baten?).

7.5.5. Analyseer financierende instrumenten en breng dit zoveel mogelijk in overeenstemming met de werkelijke kosten.

Deze studie kijkt eerder beperkt naar verdeel-effecten tussen verschillende actoren. Wie veroorzaakt welke kosten en wie betaalt hier effectief voor? Dit is een belangrijke vraagstelling die ook beter helpt begrijpen waarom het sprawl-fenomeen in Vlaanderen moeilijk aan te pakken is. Concrete financierende instrumenten voor woningen zoals de onroerende voorheffing
gebaseerd op het kadastraal inkomen, subsidies voor hemelwaterputten en zonnepanelen, de facturatie van nutsvoorzieningen die vooral op verbruik is gebaseerd, etc. zorgen er niet altijd voor dat de meerkosten van urban sprawl ook effectief worden aangerekend. In tegendeel, vaak dragen instrumenten ertoe bij dat verspreid wonen financieel gezien aantrekkelijk wordt of blijft in vergelijking met wonen in een stads kern. Bekijk dit kritisch, breng dit in beeld en durf hierover het debat aan te gaan.

Naast de impact op private huishoudens, speelt ook gemeentefinanciering een belangrijke rol in de verdere aanpak van het sprawl-fenomeen. “Hoe meer inwoners, hoe meer bedrijven, des te meer inkomsten een gemeente genereert.” Dit fenomeen beter begrijpen en waar mogelijk kritisch bekijken en beïnvloeden kan een belangrijke impact hebben op het ruimtelijk beleid van lokale besturen.

7.5.6. Hou opties voor de lange termijn open.

Sprawl pak je niet aan van vandaag op morgen. Een historische erfenis die gedurende decennia is opgebouwd, krijg je moeilijk rechtgezet in slechts enkele jaren tijd. Het is deze terechte bedenking die net op het belang wijst van korte termijn handelen op het lange termijn ruimtelijk beleid. Infrastructuur die we bijkomend aanleggen of bebouwing ten koste van open ruimte die we vandaag aanleggen, blijft er in principe liggen tot in de eeuwigheid. Het verwijderen van bebouwing om open ruimte terug te herstellen is veel moeilijker en gebeurt tot op heden zelden in de praktijk. Inherent betekent dit ook dat de keuzes die we vandaag maken ook maatschappelijke kosten blijven veroorzaken tot op de zeer lange termijn. Wat we kunnen realiseren binnen thema's zoals energetransitie, circulaire economie en slimme mobiliteit hangt samen met ons ruimtelijk beleid. Keuzes van vandaag die mogelijk dergelijke transities op de langere termijn moeilijker maken, moeten we vermijden. Sprawl verkleint onze opties op de langere termijn, ongeacht hoe de toekomst er precies zal uitzien.

7.5.7. Vertaal scenario’s naar de praktijk.

Deze studie is beperkt tot het becijferen van de maatschappelijke kosten. De resultaten zijn dan ook wetenschappelijk cijfermateriaal over de toestand en evolutie van sprawl en de bijhorende maatschappelijke kosten in Vlaanderen. De studie is geen aanzet tot operationele beleidskaders.

De resultaten tonen echter dat een aanpassing van de praktijk op korte termijn nodig is om op lange termijn significante impact te hebben. Het RuimteModel brengt op een zo getrouw mogelijke wijze de mogelijkheid van het landgebruik in kaart. Dit betekent dat veranderingen zich relatief geleidelijk vertonen en niet abrupt. Het BRV- en AUS-scenario geven in de eerste jaren allebei nog aanleiding tot bijkomend ruimtebeslag die pas na verloop van tijd omschakelt tot nulgroei of teruggave van open ruimte. Bijgevolg hoe langer een implementatie van een alternatief scenario op zich laat wachten, hoe kleiner de te boeken winsten zijn op lange termijn.

De goedkeuring van de strategische visie Beleidsplan Ruimte Vlaanderen in 2018 vormt daarbij een goed uitgangspunt, maar om deze strategie in de praktijk om te zetten is er nood aan goede beleidskaders. Deze operationele beleidskaders moeten het terugdringen van de groei in ruimtebeslag aanmoedigen of zelfs opleggen. Voornamelijk de lokale besturen hebben nood aan concrete, meetbare indicatoren en richtlijnen om hun dagelijkse werking aan te passen in functie van de inperking van urban sprawl.

Vandaag wordt bv. reeds gewerkt aan het (her)bekijken en evalueren van woonuitbreidingsgebieden, in samenwerking met lokale besturen. Een vergelijking van het huidige ruimtebeslag met de ‘harde bestemmingen’ uit de zogenaamde ruimteboekhouding (RBH), tonen echter aan dat het juridische aanbod (niet-ruimtebeslag binnen harde bestemming) nog zo’n 76.000 ha besloeg in 2016 (Poelmans et al., 2016). Hoewel deze harde bestemmingen zeker niet allemaal zullen bijdragen tot de toekomstige groei van het ruimtebeslag, geeft de
grootte-orde wel aan dat concrete maatregelen nodig zullen zijn om dit resterende juridisch aanbod gericht te schappn om zo in de richting van een nulgroei te kunnen evolueren in de toekomst.

7.4.7. Onderzoek bijkomende kostenposten.

De studie heeft geleid tot significante en meetbare meerkost van sprawl in Vlaanderen voor de kostenposten infrastructuur, mobiliteit en open ruimte (ecosysteemdiensten). Voor deze kostenposten (1) konden kencijfers verzameld worden bij Vlaamse instanties die verantwoordelijk zijn voor vb. het uitvoeren van herstellingen of operationeel houden van diensten en (2) zijn de kostendrivers te linken zijn aan ruimtelijke en meetbare indicatoren die in het RuimteModel berekend en/of gesimuleerd kunnen worden. Doordat maar een beperkt aantal kostenposten in dit detail berekend konden worden, zijn de becijferde cumulatieve baten slechts een ondergrens. Wanneer meerdere kostenposten gemonetariseerd kunnen worden, kan een vollediger beeld van de kosten van sprawl en de baten van alternatieve scenario’s berekend worden. In deze studie kon een eerste aanzet gegeven worden van de kosten die zijn gerelateerd aan publieke diensten, verplaatsingen met zich meebrengen (afvalophaling, postbedeling). Op basis van de bevindingen uit deze studie, kon geen duidelijk verband worden gevonden tussen de mate van urban sprawl en de kosten voor deze diensten. Wel werd aangegeven dat voor diensten waarvoor verplaatsingen nodig zijn tot aan de woning, zoals postbedeling en afval-inzameling, urban sprawl vermoedelijk wel meerkosten veroorzaakt. Verder onderzoek zou kunnen uitwijzen of dit voor deze en soortgelijke diensten, zoals thuisverpleging, leidt tot significante verschillen tussen landelijke en stedelijke gebieden. Het groeiende belang van e-commerce tegenover het afnemende belang van briefwisseling, maakt echter dat de huidige modellen van postbedeling mogelijk niet meer van toepassing zijn binnen enkele jaren. Het effect hiervan op de kosten gerelateerd aan urban sprawl zou dus kunnen wijzigen in de toekomst.

Tot slot zijn enkele relatief nieuwe thema’s, zoals energietransitie, circulaire economie en slimme mobiliteit nog niet begroot in deze studie. Naarmate de kennis over deze thema’s groeit, kan ook het effect van urban sprawl op eventuele kosten die hieraan verbonden zijn verder onderzocht worden. Wat betreft energietransitie werd hiervoor een beschrijvende aanzet gegeven in deze studie.

7.5.8. Investeer in een gedragsveranderingsproces

Zoals toegelicht in hoofdstuk zes zal inzicht alleen niet voldoende zijn om het fenomeen Urban Sprawl daadwerkelijk af te remmen, te stoppen of om te keren. Daarvoor is dit fenomeen te sterk verbonden met ons dagelijks leven; met hoe we wonen, waar we werken, hoe we ons verplaatsen, ... Willen we het anders gaan doen, moeten we een gedragsverandering realiseren bij de brede bevolking. Dit is natuurlijk eenvoudige gesteld dan gedaan. Gelukkig zijn de afgelopen jaren heel wat onderzoeken gevoerd naar gedragsveranderingen bij maatschappelijke uitdagingen en zijn een aantal van de belangrijkste inzichten gebundeld in modellen. Hieronder geven we op basis van deze modellen en aangevuld met eigen inzichten een aanzet voor het verdere proces waarlangs deze gedragsverandering tot stand kan komen. Zo komen we uiteindelijk uit bij zes stappen:

- Richting geven
- Doelgroepen verfijnen
- Hefbomen definiëren
- Strategie en plan van aanpak
- Evalueren
- Delen van inzichten
Dit geeft de indruk dat achtereenvolgens elke stap doorlopen kan worden en aan het einde van de rit een gegarandeerd resultaat klaarligt. Dit is echter niet het geval. In realiteit zijn processen rommelig. Verschillende stappen lopen door elkaar, stappen moeten hernomen worden,... Dit is eigen aan een goed proces. Een goed proces laat immers ruimte voor actoren om mee de richting en dus het ritme te bepalen. Toch is het waardevol om deze stappen inzichtelijk te hebben zodat op het moment dat het proces houvast mist, er naar iets kan teruggingrepen worden. Net zoals op momenten van evaluatie. Dan kunnen de stappen de inzichten opnieuw scherpstellen en nieuwe antwoorden aanreiken

7.5.8.1. Richting aangeven

Een belangrijk startpunt voor een gedragsverandering is het formuleren van een noodzaak of urgentie samen met het gewenste eindpunt. Enkel wanneer dit inzichtelijk is zal ook het gedrag of de gedragsverandering die ons naar dat eindpunt brengt duidelijk worden. De scenario-oefening in deze studie werpt alvast een blik op de mogelijkheden en winsten voor toekomstig beleid maar maakt hierin nog geen beslissing.

| Is het voldoende wanneer de kosten herverdeeld worden, of willen we meer dan dat? Gaat het enkel over toekomstig ruimtebeslag of willen we ook het huidige ruimtebeslag aanpakken? En welke impact heeft dit eindpunt op het gewenste gedrag van welke doelgroepen; m.a.w. welke gedragsverandering wordt er gevraagd van wie? |

7.5.8.2. Doelgroepen verfijnen

In het opzetten van een gedragsveranderingsproces kan elk van deze groepen verder ingedeeld worden. Voor de groep ‘politici’ kan een verdere indeling op basis van bestuursniveau relevant zijn maar misschien nog relevanter de mate waarin zij geconfronteerd worden met de fenomeen.

Bij professionals zal een onderscheid langsheen hun rol ten aanzien van de uitdaging dan weer relevanter zijn. Zo vervult een studiebureau vaak een adviesrol naar bijvoorbeeld bouwheren maar heeft een projectontwikkelaar een directere impact op het programma.

Tot slot is voor het brede publiek, maar ook voor voorgaande groepen, een indeling op basis van hun houding of positie ten aanzien van het gewenste gedrag zeer interessant. Stelt iemand afwijkend gedrag (1) omdat deze onwetend is, (2) omdat bepaalde drempels hem tegenhouden of (3) omdat deze niet gelooft in de noodzaak van een gedragsverandering. Het spreekt voor zich dat afhankelijk van deze houding andere hefbomen effectiever zijn.

Nu het gewenste eindpunt duidelijk is, dringt verder onderzoek naar de doelgroepen zich op. Vanuit grondig inzicht in de doelgroepen is het immers mogelijk om gerichter hefbomen in te voor het gewenste gedrag. Binnen de onderzoeksoordracht onderscheidden we drie doelgroepen op basis van de impact die elk van deze groepen heeft op de aanpak van het fenomeen Urban Sprawl: politici, professionelen en het brede publiek.

7.5.8.3. Hefbomen identificeren

Zoals gesteld onder het luik ‘doelgroepen’ zullen afhankelijk van de houding ten aanzien van de gedragsverandering andere hefbomen effectiever zijn om de gewenste gedragsverandering te realiseren. Over wat de mogelijkheden zijn bestaan talrijke lijstjes maar wellicht één van de bekendste is het 7E model van Fran Bambust, waarin zij drie types en zeven hefbomen beschrijft.
voor communicatie die afzonderlijk of in combinatie kunnen leiden tot de gewenste gedragsverandering (Bron: p. 31).

Type 1: motiveren
- Enthousiasm: enthousiasmeer mensen voor de uitdaging die voorligt
- Encourage: toon wat de winsten voor hen kunnen zijn – maak de winsten tastbaar/zichtbaar
- Engage: toon dat anderen betrokken zijn

Type 2: Ondersteunen
- Enlighten: geef informatie, deel kennis
- Exemplify: geef het goede voorbeeld met beleid en andere maatregelen
- Enable: maak het eenvoudiger om het gewenste gedrag te stellen

Type 3: Laten beleven
- Experience: beleving komt met het gewenste gedrag

Type 4: Afdwingen
- Enforce: verplicht het gewenste gedrag via beleid
Een gelijkaardig model kwam tot stand dankzij onderzoekster Cathy Macharis: 5E model of environmental engagement (Bron: p. 5).

- **Estimate**: Maak duidelijk waarom de status quo niet houdbaar is, en waarom de gewenste verandering daarop een antwoord is.
- **Engage**: Zorg dat mensen zich verbonden voelen met de uitdaging
- **Educate**: Informeer mensen over wat zij kunnen doen en hoe zij dat kunnen doen
- **Enable**: maak het eenvoudig om het gewenste gedrag te stellen (eenvoudiger dan het traditionele gedrag)
- **Encourage**: beloon inspanningen, maak winsten inzichtelijk

Dit model werd getest binnen de omgeving van een universiteitscampus maar bevat evenzeer interessante inzichten voor duurzame gedragsverandering algemeen. Een belangrijke focus in dit model is de sterk link met het creëren van betrokkenheid tussen de doelgroep en uitdaging door hen mee te betrekken in het zoeken naar oplossingsrichtingen voor de uitdaging.

In het geval van de aanpak van Urban Sprawl zou dit dus betekenen dat het brede publiek de kans krijgt om mee te betalen hoe het vooropgestelde doel bereikt wordt.

Ook de eigen ervaring leert ons dat het creëren van betrokkenheid tot de uitdaging zeer bepalend is, zowel in het vinden van draagvlak voor de maatregelen als in de effectiviteit van de uitvoering ervan.
7.5.8.4. Strategie en plan van aanpak

Op basis van een grondiger inzicht in het gewenste eindpunt, de doelgroepen en hun houding ten aanzien van dat eindpunt en de daarbij mogelijke hefbomen, is het mogelijk om een strategie en plan van aanpak op te stellen en uit te rollen. In de strategie wordt bepaald op welke manier de uitdaging aangepakt zal worden. Vervolgens worden de verschillende stappen van de strategie uitgezet in het plan van aanpak. In dit onderdeel komen dus alle voorgaande stappen samen.

7.5.8.5. Evaluateer

Processen onderscheiden zich van projecten door hun organisch, niet-lineair verloop. Bovendien is het verloop onderhevig aan allerlei externe factoren: nieuwe kennis, nieuwe actoren, … Dit betekent dat processen voortdurende moeten bijgestuurd worden om effectief te blijven. Momenten van evaluatie zijn daarvoor cruciaal.

7.5.8.6. Deel inzichten

Iedereen die werkt rond maatschappelijke uitdagingen is op zoek naar manieren om de gewenste gedragsverandering te realiseren. Door aanpak en inzichten te delen met anderen via presentaties, studiedagen, artikels, etc. is het mogelijk ook met hen een gesprek aan te gaan en nieuwe kennis op te doen.

Omwille van het potentieel van het delen van inzichten kan het interessant zijn om ook rond dit aspect van de opgave een werkgroep of werkgemeenschap op te richten die op regelmatige tijdstippen samenkomt om hun licht te laten schijnen op de evoluties in het veranderingsproces.
8. Bronnen

Bambust, F, 2015. 7e Model, Brussel: Politeia

Broekx Steven, De Nocker Leo, Liekens Inge, Poelmans Lien, Staes Jan, Van der Biest Katrien, Meire Patrick, Verheyen Kris, 2013. Raming van de baten geleverd door het Vlaamse NATURA 2000-netwerk Studie uitgevoerd in opdracht van: Agentschap Natuur en Bos (ANB/IHD/11/03) door VITO, Universiteit Antwerpen en Universiteit Gent

BUUR en RebelGroup, 2015. Financiële argumenten voor een hoger ruimtelijk rendement. Studie in opdracht van Ruimte Vlaanderen

Crabbé, A., 2017. Effectiviteitsanalyse van het waterbeleid Beleidsadvies over het waterbeleid in Vlaanderen op basis van een uitgebreide expertenbevraging. Studie uitgevoerd in opdracht van MIRA, Milieureport Vlaanderen

Ewing, R., Hamidi, S., 2014. Measuring Urban Sprawl and Validating Sprawl Measures, Metropolitan Research Center at the University of Utah for the National Cancer Institute, the Brookings Institution and Smart Growth America (www.smartgrowthamerica.org);

Handy, S., Shafizadeh, K., Schneider, R., 2013. California Smart-Growth Trip Generation Rates Study and Smart Growth Trip-Generation Adjustment Tool, University of California, Davis for the California Department of Transportation

JICA, 2011. The Research on Practical Approach for Urban Transport Planning, Japan International Cooperation Agency (www.jica.go.jp);
Litman, T., 2017. Land Use Impacts on Transport, How Land Use Factors Affect Travel Behavior, Victoria transport policy institute, 2017
Marique, Dujardin, Teller, Reiter, 2013. Urban sprawl, commuting and travel energy consumption, Energy, Vol (166)
Outwater, M., et al., 2014. Effect of Smart Growth Policies on Travel Demand, Report S2-C16-RR-1, Strategic Highway Research Program (SHRP 2), Transportation Research Board (www.trb.org)

OVAM, 2013b. Studie kostprijs en hoeveelheid zwerfvuil in 2013

Speir and Stephenson, 2002. ‘Does sprawl cost us all? Isolating the effects of housing patterns on public water and sewer costs’ Journal of the American Planning Association (68) 56 - 70

Smart Prosperity Institute, 2018. Infographic on cost of urban sprawl. Beschikbaar op: https://institute.smartprosperity.ca

Swiss Federal Institute of Forest, Snow and Landscape Research (WSL) (www.wsl.ch/zersiedelung), http://www.wsl.ch/info/fokus/zersiedelung/onlinetool/index_DE

Vermeiren et al., 2019 Gaat en verspreidt u, Ruimte (40) gepubliceerd in navolging van de Werelddag van de Stedenbouw (Deinze, 29 november 2018).

WEYTS, VLAAMS MINISTER VAN MOBILITEIT, OPENBARE WERKEN, VLAAMSE RAND, TOERISME EN DIERENWELZIJN

Vlaamse Milieumaatschappij, 2018. Kosten voor riolering - Een blik vooruit

Bijlage 1: Gebruikte wegtypes voor analyse

<table>
<thead>
<tr>
<th>Wegcat_code</th>
<th>Wegcat_txt</th>
<th>Morfologie</th>
<th>Lengte_m</th>
<th>Gebruikt?</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>aardeweg</td>
<td>21720</td>
<td>nee</td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>autosnelweg</td>
<td>16879</td>
<td>nee</td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>dienstweg</td>
<td>49177</td>
<td>nee</td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>in- of uitrit van een dienst</td>
<td>47933</td>
<td>nee</td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>in- of uitrit van een parking</td>
<td>11238</td>
<td>nee</td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>niet gekend</td>
<td>43449</td>
<td>ja</td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>op- of afrit, behorende tot een geralijkgrondse verbinding</td>
<td>9982</td>
<td>nee</td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>op- of afrit, behorende tot een niet-geralijkgrondse verbinding</td>
<td>92762</td>
<td>nee</td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>parallelweg</td>
<td>11377</td>
<td>nee</td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>rotonde</td>
<td>47983</td>
<td>ja</td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>speciale verkeerssituatie</td>
<td>10820</td>
<td>ja</td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>tramweg, niet toegankelijk voor andere voertuigen</td>
<td>82602</td>
<td>nee</td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>veer</td>
<td>1142</td>
<td>nee</td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>ventweg</td>
<td>19873</td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>verkeersplein</td>
<td>2530</td>
<td>nee</td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>voetgangerszone</td>
<td>2546</td>
<td>nee</td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>wandel- of fietsweg, niet toegankelijk voor andere voertuigen</td>
<td>11613</td>
<td>570 nee</td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>weg bestaande uit één rijbaan</td>
<td>66440</td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td>niet gekend</td>
<td>weg met gescheiden rijbanen die geen autosnelweg is</td>
<td>91671</td>
<td>6 ja</td>
</tr>
<tr>
<td>-9</td>
<td>niet van toepassing</td>
<td>aardeweg</td>
<td>65731</td>
<td>nee</td>
</tr>
<tr>
<td>-9</td>
<td>niet van toepassing</td>
<td>dienstweg</td>
<td>44196</td>
<td>nee</td>
</tr>
<tr>
<td>-9</td>
<td>niet van toepassing</td>
<td>in- of uitrit van een dienst</td>
<td>24703</td>
<td>nee</td>
</tr>
<tr>
<td>-9</td>
<td>niet van toepassing</td>
<td>in- of uitrit van een parking</td>
<td>27981</td>
<td>nee</td>
</tr>
<tr>
<td>-9</td>
<td>niet van toepassing</td>
<td>niet gekend</td>
<td>418</td>
<td>ja</td>
</tr>
<tr>
<td>-9</td>
<td>niet van toepassing</td>
<td>op- of afrit, behorende tot een geralijkgrondse verbinding</td>
<td>31</td>
<td>nee</td>
</tr>
<tr>
<td>Beschrijving</td>
<td>Nummer</td>
<td>Resultaat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>niet van toepassing op- of afrit, behorende tot een niet-gelijkgrondse verbinding</td>
<td>419</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>niet van toepassing parallelweg</td>
<td>267</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>niet van toepassing rotonde</td>
<td>547</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>niet van toepassing speciale verkeerssituatie</td>
<td>140</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>niet van toepassing tramweg, niet toegankelijk voor andere voertuigen</td>
<td>56319</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>niet van toepassing ventweg</td>
<td>677</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>niet van toepassing verkeersplein</td>
<td>1347</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>niet van toepassing voetgangerszone</td>
<td>328</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>niet van toepassing wandel- of fietsweg, niet toegankelijk voor andere voertuigen</td>
<td>24527</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>niet van toepassing weg bestaande uit één rijbaan</td>
<td>96919</td>
<td>ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>niet van toepassing weg met gescheiden rijbanen die geen autosnelweg is</td>
<td>2895</td>
<td>ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H hoofdweg autosnelweg</td>
<td>16170</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H hoofdweg op- of afrit, behorende tot een gelijkgrondse verbinding</td>
<td>183</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H hoofdweg op- of afrit, behorende tot een niet-gelijkgrondse verbinding</td>
<td>75558</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H hoofdweg parallelweg</td>
<td>22351</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H hoofdweg weg met gescheiden rijbanen die geen autosnelweg is</td>
<td>99201</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L lokale wegweg bestaande uit één rijbaan</td>
<td>9</td>
<td>ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 lokale weg type 1 aardeweg</td>
<td>330</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 lokale weg type 1 autosnelweg</td>
<td>3678</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 lokale weg type 1 dienstweg</td>
<td>428</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 lokale weg type 1 op- of afrit, behorende tot een gelijkgrondse verbinding</td>
<td>6673</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 lokale weg type 1 op- of afrit, behorende tot een niet-gelijkgrondse verbinding</td>
<td>61871</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 lokale weg type 1 parallelweg</td>
<td>685</td>
<td>nee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 lokale weg type 1 rotonde</td>
<td>22222</td>
<td>ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 lokale weg type 1 speciale verkeerssituatie</td>
<td>109</td>
<td>ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 lokale weg type 1 ventweg</td>
<td>7409</td>
<td>ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lokale weg type</td>
<td>beschrijving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>L1</td>
<td>lokale weg type</td>
<td>wandel- of fietsweg, niet toegankelijk voor andere voertuigen</td>
<td>92</td>
<td>nee</td>
</tr>
<tr>
<td>L1</td>
<td>lokale weg type</td>
<td>weg bestaande uit één rijbaan</td>
<td>36105</td>
<td>ja</td>
</tr>
<tr>
<td>L1</td>
<td>lokale weg type</td>
<td>weg met gescheiden rijbanen die geen autosnelweg is</td>
<td>34137</td>
<td>ja</td>
</tr>
<tr>
<td>L2</td>
<td>lokale weg type</td>
<td>autosnelweg</td>
<td>2811</td>
<td>nee</td>
</tr>
<tr>
<td>L2</td>
<td>lokale weg type</td>
<td>dienstweg</td>
<td>112</td>
<td>nee</td>
</tr>
<tr>
<td>L2</td>
<td>lokale weg type</td>
<td>in- of uitrit van een parking</td>
<td>281</td>
<td>nee</td>
</tr>
<tr>
<td>L2</td>
<td>lokale weg type</td>
<td>op- of afrit, behorende tot een gelijkgrondse verbinding</td>
<td>11003</td>
<td>nee</td>
</tr>
<tr>
<td>L2</td>
<td>lokale weg type</td>
<td>op- of afrit, behorende tot een niet-gelijkgrondse verbinding</td>
<td>28490</td>
<td>nee</td>
</tr>
<tr>
<td>L2</td>
<td>lokale weg type</td>
<td>parallelweg</td>
<td>1029</td>
<td>nee</td>
</tr>
<tr>
<td>L2</td>
<td>lokale weg type</td>
<td>rotonde</td>
<td>28216</td>
<td>ja</td>
</tr>
<tr>
<td>L2</td>
<td>lokale weg type</td>
<td>speciale verkeerssituatie</td>
<td>271</td>
<td>ja</td>
</tr>
<tr>
<td>L2</td>
<td>lokale weg type</td>
<td>veer</td>
<td>263</td>
<td>nee</td>
</tr>
<tr>
<td>L2</td>
<td>lokale weg type</td>
<td>ventweg</td>
<td>9239</td>
<td>ja</td>
</tr>
<tr>
<td>L2</td>
<td>lokale weg type</td>
<td>voetgangerszone</td>
<td>261</td>
<td>nee</td>
</tr>
<tr>
<td>L2</td>
<td>lokale weg type</td>
<td>wandel- of fietsweg, niet toegankelijk voor andere voertuigen</td>
<td>512</td>
<td>nee</td>
</tr>
<tr>
<td>L2</td>
<td>lokale weg type</td>
<td>weg bestaande uit één rijbaan</td>
<td>57903</td>
<td>nee</td>
</tr>
<tr>
<td>L2</td>
<td>lokale weg type</td>
<td>weg met gescheiden rijbanen die geen autosnelweg is</td>
<td>32023</td>
<td>no</td>
</tr>
<tr>
<td>L3</td>
<td>lokale weg type</td>
<td>aardeweg</td>
<td>25689</td>
<td>nee</td>
</tr>
<tr>
<td>L3</td>
<td>lokale weg type</td>
<td>dienstweg</td>
<td>875</td>
<td>nee</td>
</tr>
<tr>
<td>L3</td>
<td>lokale weg type</td>
<td>in- of uitrit van een dienst</td>
<td>118</td>
<td>nee</td>
</tr>
<tr>
<td>L3</td>
<td>lokale weg type</td>
<td>in- of uitrit van een parking</td>
<td>2544</td>
<td>nee</td>
</tr>
<tr>
<td>L3</td>
<td>lokale weg type</td>
<td>niet gekend</td>
<td>286</td>
<td>ja</td>
</tr>
<tr>
<td>L3</td>
<td>lokale weg type</td>
<td>op- of afrit, behorende tot een gelijkgrondse verbinding</td>
<td>4246</td>
<td>nee</td>
</tr>
<tr>
<td>L3</td>
<td>lokale weg type</td>
<td>op- of afrit, behorende tot een niet-gelijkgrondse verbinding</td>
<td>10666</td>
<td>nee</td>
</tr>
<tr>
<td>L3</td>
<td>lokale weg type</td>
<td>parallelweg</td>
<td>1021</td>
<td>nee</td>
</tr>
<tr>
<td>L3</td>
<td>lokale weg type</td>
<td>3</td>
<td>rotonde</td>
<td>1362</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>-------</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>L3</td>
<td>lokale weg type</td>
<td>3</td>
<td>speciale verkeerssituatie</td>
<td>53</td>
</tr>
<tr>
<td>L3</td>
<td>lokale weg type</td>
<td>3</td>
<td>ventweg</td>
<td>61077</td>
</tr>
<tr>
<td>L3</td>
<td>lokale weg type</td>
<td>3</td>
<td>verkeersplein</td>
<td>161</td>
</tr>
<tr>
<td>L3</td>
<td>lokale weg type</td>
<td>3</td>
<td>voetgangerszone</td>
<td>841</td>
</tr>
<tr>
<td>L3</td>
<td>lokale weg type</td>
<td>3</td>
<td>wandel- of fietsweg, niet toegankelijk voor andere voertuigen</td>
<td>38857</td>
</tr>
<tr>
<td>L3</td>
<td>lokale weg type</td>
<td>3</td>
<td>weg bestaande uit één rijbaan</td>
<td>85635</td>
</tr>
<tr>
<td>L3</td>
<td>lokale weg type</td>
<td>3</td>
<td>weg met gescheiden rijbanen die geen autosnelweg is</td>
<td>33243</td>
</tr>
<tr>
<td>PI</td>
<td>primaire weg I</td>
<td>autosnelweg</td>
<td>10398</td>
<td>nee</td>
</tr>
<tr>
<td>PI</td>
<td>primaire weg I</td>
<td>dienstweg</td>
<td>628</td>
<td>nee</td>
</tr>
<tr>
<td>PI</td>
<td>primaire weg I</td>
<td>op- of afrit, behorende tot een gelijkgrondse verbinding</td>
<td>351</td>
<td>nee</td>
</tr>
<tr>
<td>PI</td>
<td>primaire weg I</td>
<td>op- of afrit, behorende tot een niet-gelijkgrondse verbinding</td>
<td>57256</td>
<td>nee</td>
</tr>
<tr>
<td>PI</td>
<td>primaire weg I</td>
<td>parallelweg</td>
<td>17179</td>
<td>nee</td>
</tr>
<tr>
<td>PI</td>
<td>primaire weg I</td>
<td>rotonde</td>
<td>2577</td>
<td>nee</td>
</tr>
<tr>
<td>PI</td>
<td>primaire weg I</td>
<td>weg bestaande uit één rijbaan</td>
<td>13600</td>
<td>nee</td>
</tr>
<tr>
<td>PI</td>
<td>primaire weg I</td>
<td>weg met gescheiden rijbanen die geen autosnelweg is</td>
<td>34591</td>
<td>5 nee</td>
</tr>
<tr>
<td>PII</td>
<td>primaire weg II</td>
<td>autosnelweg</td>
<td>87491</td>
<td>nee</td>
</tr>
<tr>
<td>PII</td>
<td>primaire weg II</td>
<td>dienstweg</td>
<td>477</td>
<td>nee</td>
</tr>
<tr>
<td>PII</td>
<td>primaire weg II</td>
<td>op- of afrit, behorende tot een gelijkgrondse verbinding</td>
<td>4491</td>
<td>nee</td>
</tr>
<tr>
<td>PII</td>
<td>primaire weg II</td>
<td>op- of afrit, behorende tot een niet-gelijkgrondse verbinding</td>
<td>17041</td>
<td>5 nee</td>
</tr>
<tr>
<td>PII</td>
<td>primaire weg II</td>
<td>parallelweg</td>
<td>21240</td>
<td>nee</td>
</tr>
<tr>
<td>PII</td>
<td>primaire weg II</td>
<td>rotonde</td>
<td>15332</td>
<td>nee</td>
</tr>
<tr>
<td>PII</td>
<td>primaire weg II</td>
<td>ventweg</td>
<td>97</td>
<td>nee</td>
</tr>
<tr>
<td>PII</td>
<td>primaire weg II</td>
<td>wandel- of fietsweg, niet toegankelijk voor andere voertuigen</td>
<td>138</td>
<td>nee</td>
</tr>
<tr>
<td>PII</td>
<td>primaire weg II</td>
<td>weg bestaande uit één rijbaan</td>
<td>22259</td>
<td>3 nee</td>
</tr>
<tr>
<td>PII</td>
<td>primaire weg II</td>
<td>weg met gescheiden rijbanen die geen autosnelweg is</td>
<td>75628</td>
<td>8 nee</td>
</tr>
<tr>
<td>PII-4</td>
<td>primaire weg II type 4</td>
<td>op- of afrit, behorende tot een gelijkgrondse verbinding</td>
<td>86</td>
<td>nee</td>
</tr>
<tr>
<td>PII-4</td>
<td>primaire weg II type 4</td>
<td>op- of afrit, behorende tot een niet-gelijkgrondse verbinding</td>
<td>49637</td>
<td>nee</td>
</tr>
<tr>
<td>PII-4</td>
<td>primaire weg II type 4</td>
<td>parallelweg</td>
<td>6210</td>
<td>nee</td>
</tr>
<tr>
<td>Type</td>
<td>Subtype</td>
<td>Function</td>
<td>Value</td>
<td>Action</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>PII-4</td>
<td>primaire weg II</td>
<td>rotonde</td>
<td>646</td>
<td>nee</td>
</tr>
<tr>
<td>PII-4</td>
<td>primaire weg II</td>
<td>weg bestaande uit één rijbaan</td>
<td>353</td>
<td>nee</td>
</tr>
<tr>
<td>PII-4</td>
<td>primaire weg II</td>
<td>weg met gescheiden rijbanen die geen autosnelweg is</td>
<td>1012</td>
<td>nee</td>
</tr>
<tr>
<td>S</td>
<td>secundaire weg</td>
<td>rotonde</td>
<td>199</td>
<td>nee</td>
</tr>
<tr>
<td>S</td>
<td>secundaire weg</td>
<td>weg bestaande uit één rijbaan</td>
<td>6590</td>
<td>nee</td>
</tr>
<tr>
<td>S</td>
<td>secundaire weg</td>
<td>weg met gescheiden rijbanen die geen autosnelweg is</td>
<td>1979</td>
<td>nee</td>
</tr>
<tr>
<td>S1</td>
<td>secundaire weg type 1</td>
<td>autosnelweg</td>
<td>8494</td>
<td>nee</td>
</tr>
<tr>
<td>S1</td>
<td>secundaire weg type 1</td>
<td>dienstweg</td>
<td>352</td>
<td>nee</td>
</tr>
<tr>
<td>S1</td>
<td>secundaire weg type 1</td>
<td>op- of afrit, behorende tot een gelijkgrondse verbinding</td>
<td>1717</td>
<td>nee</td>
</tr>
<tr>
<td>S1</td>
<td>secundaire weg type 1</td>
<td>op- of afrit, behorende tot een niet-gelijkgrondse verbinding</td>
<td>9401</td>
<td>nee</td>
</tr>
<tr>
<td>S1</td>
<td>secundaire weg type 1</td>
<td>rotonde</td>
<td>6669</td>
<td>nee</td>
</tr>
<tr>
<td>S1</td>
<td>secundaire weg type 1</td>
<td>weg bestaande uit één rijbaan</td>
<td>40370</td>
<td>1 nee</td>
</tr>
<tr>
<td>S1</td>
<td>secundaire weg type 1</td>
<td>weg met gescheiden rijbanen die geen autosnelweg is</td>
<td>19725</td>
<td>8 nee</td>
</tr>
<tr>
<td>S2</td>
<td>secundaire weg type 2</td>
<td>op- of afrit, behorende tot een gelijkgrondse verbinding</td>
<td>3409</td>
<td>nee</td>
</tr>
<tr>
<td>S2</td>
<td>secundaire weg type 2</td>
<td>op- of afrit, behorende tot een niet-gelijkgrondse verbinding</td>
<td>52433</td>
<td>nee</td>
</tr>
<tr>
<td>S2</td>
<td>secundaire weg type 2</td>
<td>rotonde</td>
<td>15846</td>
<td>nee</td>
</tr>
<tr>
<td>S2</td>
<td>secundaire weg type 2</td>
<td>speciale verkeerssituatie</td>
<td>2031</td>
<td>nee</td>
</tr>
<tr>
<td>S2</td>
<td>secundaire weg type 2</td>
<td>ventweg</td>
<td>148</td>
<td>nee</td>
</tr>
<tr>
<td>S2</td>
<td>secundaire weg type 2</td>
<td>weg bestaande uit één rijbaan</td>
<td>83343</td>
<td>3 nee</td>
</tr>
<tr>
<td>S2</td>
<td>secundaire weg type 2</td>
<td>weg met gescheiden rijbanen die geen autosnelweg is</td>
<td>42607</td>
<td>5 nee</td>
</tr>
<tr>
<td>S3</td>
<td>secundaire weg type 3</td>
<td>dienstweg</td>
<td>816</td>
<td>nee</td>
</tr>
<tr>
<td>S3</td>
<td>secundaire weg type 3</td>
<td>op- of afrit, behorende tot een gelijkgrondse verbinding</td>
<td>4275</td>
<td>nee</td>
</tr>
<tr>
<td>S3</td>
<td>secundaire weg type 3</td>
<td>op- of afrit, behorende tot een niet-gelijkgrondse verbinding</td>
<td>38661</td>
<td>nee</td>
</tr>
<tr>
<td>S3</td>
<td>secundaire weg type 3</td>
<td>parallelweg</td>
<td>1505</td>
<td>nee</td>
</tr>
<tr>
<td>S3</td>
<td>secundaire weg type 3</td>
<td>rotonde</td>
<td>7683</td>
<td>nee</td>
</tr>
<tr>
<td>S3</td>
<td>secundaire weg type 3</td>
<td>speciale verkeerssituatie</td>
<td>770</td>
<td>nee</td>
</tr>
<tr>
<td>S3</td>
<td>secundaire weg type 3</td>
<td>tramweg, niet toegankelijk voor andere voertuigen</td>
<td>889</td>
<td>nee</td>
</tr>
<tr>
<td>----</td>
<td>----------------------</td>
<td>--</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>S3</td>
<td>secundaire weg type 3</td>
<td>ventweg</td>
<td>267</td>
<td>nee</td>
</tr>
<tr>
<td>S3</td>
<td>secundaire weg type 3</td>
<td>weg bestaande uit één rijbaan</td>
<td>50597</td>
<td>nee</td>
</tr>
<tr>
<td>S3</td>
<td>secundaire weg type 3</td>
<td>weg met gescheiden rijbanen die geen autosnelweg is</td>
<td>49453</td>
<td>nee</td>
</tr>
<tr>
<td>S3</td>
<td>secundaire weg type 3</td>
<td>weg met gescheiden rijbanen die geen autosnelweg is</td>
<td>2</td>
<td>nee</td>
</tr>
</tbody>
</table>
Het ruimtebeslag wordt als indicator geproduceerd op basis van de model output. Voor 2013 en 2016 zijn er actuele ruimtebeslagkaarten beschikbaar. Ieder jaar wordt de ruimtebeslagkaart geüpdatet aan de hand van de veranderingen in landgebruik en som van de activiteiten (zijnde inwoners en tewerkstelling). De activiteit wordt in klassen verdeeld en voor ieder klasse is het gemiddelde ruimtebeslag bepaald op basis van de ruimtebeslagkaart van 2016:

<table>
<thead>
<tr>
<th>Ondergrens activiteit</th>
<th>Bovengrens activiteit</th>
<th>Gemiddeld ruimtebeslag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>66</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>88</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>99</td>
</tr>
<tr>
<td>30 en groter</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Het ruimtebeslag voor een jaar wordt bepaald in functie van de verandering die optreedt ten opzichte van het voorgaande jaar:

- Als het landgebruik in een cel verandert van onbebouwd in bebouwd, dan wordt het ruimtebeslag gelijk aan het maximum van het huidig ruimtebeslag of het gemiddeld ruimtebeslag van de klasse waarin de som van de activiteiten valt.
- Als het landgebruik in cel verandert van bebouwd in onbebouwd dan wordt het ruimtebeslag gelijk aan het minimum van het huidig ruimtebeslag of het gemiddeld ruimtebeslag van de klasse waarin de som van de activiteiten valt.
- Als de som van de activiteiten groeit en de boven-klassegrens overschrijdt dan verhoogt het ruimtebeslag naar het gemiddeld ruimtebeslag van de klasse.
- Als de som van de activiteiten daalt binnen een bebouwde cel dan verandert het ruimtebeslag niet.
- Als de som van de activiteiten daalt binnen een onbebouwde cel dan daalt het ruimtebeslag als de onder-klassegrens wordt overschreden.

10 Het ruimtebeslag is één van de ruimtelijke indicatoren die voortvloeien uit het landbruiksbestand dat VITO onderhoudt in het kader van de referentieopdracht voor department Omgeving
11 Meer technische informatie wordt beschreven in bijlage 2
MONETARISEREN VAN URBAN SPRAWL IN VLAANDEREN

Colofon

Verantwoordelijke uitgever:
Peter Cabus
Secretaris-generaal
Departement Omgeving
Koning Albert II-laan 19 bus 12
1210 Brussel